© Birkhäuser Verlag, Basel, 2009

Aequationes Mathematicae

Orthogonally additive functions modulo a discrete subgroup

WIRGINIA WYROBEK

Summary. Under appropriate conditions on the abelian groups G and H and the orthogonality $\bot \subset G^2$ we prove that a function $f: G \to H$ continuous at a point is orthogonally additive modulo a discrete subgroup K if and only if there exist a unique continuous additive function $a: G \to H$ and a unique continuous biadditive and symmetric function $b: G \times G \to H$ such that $f(x) - b(x, x) - a(x) \in K$ for $x \in G$ and b(x, y) = 0 for $x, y \in G$ such that $x \perp y$.

Mathematics Subject Classification (2000). Primary 39B55, 39B52.

Keywords. Additive functions, biadditive functions, Cauchy difference, orthogonally additive functions, quadratic functions.

In this paper we work with the following orthogonality proposed by K. Baron and P. Volkmann in [4]:

Let G be a group such that the mapping

$$x \mapsto 2x, \quad x \in G,$$
 (1)

is a bijection onto the group G. A relation $\perp \subset G^2$ is called *orthogonality* if it satisfies the following two conditions:

(O) $0 \perp 0$; and from $x \perp y$ the relations $-x \perp -y, \frac{x}{2} \perp \frac{y}{2}$ follow.

(P) If an orthogonally additive function from G to an abelian group is odd, then it is additive; if it is even, then it is quadratic.

According to Theorems 5 and 6 from [7] the orthogonality considered by J. Rätz in [7] satisfies both (O) and (P).

Throughout this paper for a subset U of a given group and for $n \in \mathbb{N}$ the symbol nU denotes the set $\{nx : x \in U\}$.

Our main result reads as follows:

W. Wyrobek

Theorem 1. Assume that G is an abelian topological group such that the mapping (1) is a homeomorphism and the following condition holds:

(H) every neighbourhood of zero in G contains a neighbourhood U of zero such that

$$U \subset 2U \tag{2}$$

and

$$G = \bigcup \{ 2^n U : \ n \in \mathbb{N} \}.$$
(3)

Assume $\perp \subset G^2$ is an orthogonality, H is an abelian topological group and K is a discrete subgroup of H. Then a function $f: G \to H$ continuous at a point satisfies

$$f(x+y) - f(x) - f(y) \in K \quad \text{for } x, y \in G \text{ such that } x \perp y$$
(4)

if and only if there exist a continuous additive function $a: G \to H$ and a continuous biadditive and symmetric function $b: G \times G \to H$ such that

$$f(x) - b(x, x) - a(x) \in K \quad \text{for } x \in G \tag{5}$$

and

$$b(x,y) = 0 \quad for \ x, y \in G \ such \ that \ x \perp y.$$
(6)

Moreover, the functions a and b are uniquely determined.

Note that this theorem generalizes Theorem 2.9 from [6] and, in view of Theorem 9 from [7] and Theorem 4.2 from [3], also implies the result obtained in [1].

The proof of Theorem 1 will be presented after some lemmas. The first three lemmas and Lemma 4(i) are very similar to some results from [2], [6] and [5], but for the reader's convenience we formulate them explicitly; however, we omit their proofs. Note that Lemma 1(ii) [6, Lemma 2.3] is applied in the proof of Lemma 2 [6, Proposition 2.4], Lemma 1(i) [2, Lemma 1] and Lemma 2 in the proof of Lemma 3 [2, Theorem 3; 6, Theorem 2.6] and Lemma 3 in the proof of Lemma 4. Our Lemma 4(ii) can be proved in the same way as Lemma 4(i) [5, Lemma 4], so we also omit the proof.

Lemma 1. Assume that G is an abelian group such that (1) is a bijection onto G, H is an abelian group and $U \subset G$ is a set with properties (2) and (3).

(i) If $f: U \to H$ satisfies

$$f(x+y) = f(x) + f(y)$$
 for $x, y \in U$ with $x+y \in U$

then it has a unique extension to an additive mapping of G into H. (ii) If $f: U \to H$ satisfies

f(x+y) + f(x-y) = 2f(x) + 2f(y) for $x, y \in U$ with $x + y, x - y \in U$

and f(0) = 0, then it has a unique extension to a quadratic mapping of G into H.

Vol. 78 (2009)

Lemma 2. Assume that G is an abelian group such that (1) is a bijection onto G, H is an abelian group, K is a subgroup of H, $U \subset G$ is a set with properties (2) and (3) and W is a subset of H such that

$$0 \in W, \quad W = -W \quad and \quad (W + W + W + W + W + W) \cap K = \{0\}.$$

If $f: G \to H$ satisfies

$$f(U) - f(0) \subset K + W$$

and

$$f(x+y) + f(x-y) - 2f(x) - 2f(y) \in K \quad for \ x, y \in G,$$
(7)

then $2f(0) \in K$ and there exists a quadratic function $q: G \to H$ such that

$$f(x) - q(x) - f(0) \in K \quad for \ x \in G,$$
(8)

q(0) = 0 and $q(U) \subset W$.

Lemma 3. Assume that G is an abelian topological group such that (1) is a homeomorphism and (H) holds, H is an abelian topological group and K is a discrete subgroup of H.

(i) If $f: G \to H$ is continuous at zero and

 $f(x+y) - f(x) - f(y) \in K \quad for \ x, y \in G,$

then there exists a continuous additive function $a: G \to H$ such that

$$f(x) - a(x) \in K \quad for \ x \in G.$$

(ii) If a function $f : G \to H$ continuous at zero satisfies (7), then there exists a unique quadratic function $q : G \to H$ continuous at zero such that q(0) = 0 and (8) holds.

In the rest of this paper we consider for an abelian topological group H and a subgroup K of H, the quotient group H/K with the quotient topology:

 $\{W \subset H/K : p^{-1}(W) \text{ is an open subset of } H\},\$

where $p: H \to H/K$ is the canonical mapping: p(x) = x + K.

Lemma 4. Assume that G is an abelian topological group such that (1) is a homeomorphism and (H) holds, H is an abelian topological group and K is a discrete subgroup of H.

(i) If $A : G \to H/K$ is a continuous additive function, then there exists a continuous additive function $a : G \to H$ such that

$$a(x) \in A(x)$$
 for $x \in G$.

(ii) If $Q: G \to H/K$ is a function which is continuous at zero and Q(0) = K, then there exists a continuous at zero quadratic function $q: G \to H$ such that q(0) = 0 and

$$q(x) \in Q(x)$$
 for $x \in G$.

W. Wyrobek

The proof of the next lemma was kindly communicated to me by K. Baron.

Lemma 5. Assume that G is an abelian topological group such that (1) is a homeomorphism and (H) holds and H is an abelian topological group. If a function $b: G \times G \to H$ is biadditive and continuous at (0,0), then it is continuous.

Proof. First we prove that $b(x, \cdot)$ is continuous at zero for every $x \in G$. Take $x_0 \in G$ and a neighbourhood $W \subset H$ of zero. It follows from the continuity at zero of b and from (H) that there exists a neighbourhood $U \subset G$ of zero such that (3) and

$$b(U \times U) \subset W$$

hold. Consequently $x_0 = 2^n u_0$ with an $n \in \mathbb{N}$ and a $u_0 \in U$, and for $u \in U$ we have

$$b(x_0, 2^{-n}u) = b(2^n u_0, 2^{-n}u) = 2^n b(u_0, 2^{-n}u) = b(u_0, u) \in W.$$

Hence

$$b(x_0, 2^{-n}U) \subset W,$$

which shows that $b(x_0, \cdot)$ is continuous at zero. Clearly, the same concerns $b(\cdot, y_0)$ for every $y_0 \in G$. To finish the proof it is enough to observe now that

$$b(x,y) - b(x_0,y_0) = b(x - x_0,y_0) + b(x - x_0,y - y_0) + b(x_0,y - y_0)$$

holds for $x, y, x_0, y_0 \in G$.

Our last lemma generalizes Theorem 4.3 from [3].

Lemma 6. Assume that G is an abelian topological group such that (1) is a homeomorphism and (H) holds, $\perp \subset G^2$ is an orthogonality and H is an abelian topological group. If an orthogonally additive function $f: G \to H$ is continuous at some point, then it is continuous; more precisely, it is of the form

$$f(x) = a(x) + b(x, x) \quad \text{for } x \in G,$$
(9)

where $a: G \to H$ is a continuous additive function, $b: G \times G \to H$ is a continuous biadditive and symmetric function and (6) holds.

Proof. According to Theorem 1 from [4] the function f has form (9), where a: $G \to H$ is additive, $b: G \times G \to H$ is biadditive, symmetric and satisfies (6); moreover,

$$b(x,y) = 2\left(f\left(\frac{x+y}{4}\right) + f\left(\frac{-x-y}{4}\right) - f\left(\frac{x-y}{4}\right) - f\left(\frac{-x+y}{4}\right)\right) \quad \text{for } x, y \in G.$$
(10)

Let $x_0 \in G$ be a continuity point of f. It follows from (9) that

$$f(x+x_0) - f(x) - f(x_0) = 2b(x, x_0)$$
 for $x \in G$,

66

Vol. 78 (2009)

whence continuity at zero of $f + 2b(\cdot, x_0)$ follows. Consequently also the function

$$x \mapsto f(-x) + 2b(-x, x_0), \quad x \in G,$$

is continuous at zero. Summing up those two functions we get continuity at zero of

$$x \mapsto f(x) + f(-x), \quad x \in G.$$

Since (1) is a homeomorphism, this jointly with (10) gives continuity at (0,0) of b and applying Lemma 5 we see that b is continuous (at each point of $G \times G$). Hence and from (9) continuity of a (at x_0 and, consequently, everywhere) follows. This ends the proof.

Proof of Theorem 1. The proof of the "if" part is easy, so we omit it. The "only if" part is divided into Parts I and II.

Part I. Assume that f satisfies (4) and define the function $\hat{f}: G \to H/K$ by the formula

$$\hat{f} = p \circ f.$$

Clearly \hat{f} is continuous at a point, and (4) implies that \hat{f} is orthogonally additive. According to Lemma 6 there exist a continuous additive function $\hat{a}: G \to H/K$ and a continuous quadratic function $\hat{q}: G \to H/K$ such that $\hat{q}(0) = K$ and

$$\hat{f}(x) = \hat{a}(x) + \hat{q}(x) \quad \text{for } x \in G.$$

By Lemma 4 we get a continuous additive function $a: G \to H$ and a quadratic function $q: G \to H$ continuous at zero such that q(0) = 0,

$$p \circ a = \hat{a} \quad \text{and} \quad p \circ q = \hat{q}.$$

Consequently, $f(x) - q(x) - a(x) + K = \hat{f}(x) - \hat{q}(x) - \hat{a}(x) = K$, i.e.,

$$f(x) - q(x) - a(x) \in K \quad \text{for } x \in G.$$
(11)

It follows from Lemma 2 from [4] that q has the form

$$q(x) = b(x, x) \quad \text{for } x \in G, \tag{12}$$

where $b: G \times G \to H$ is biadditive, symmetric and continuous at (0,0). Applying Lemma 5 we see that b is continuous.

Part II. Now we prove that q is orthogonally additive and that (6) holds.

Since K is discrete, there exists a neighbourhood $W \subset H$ of zero such that

$$K \cap W = \{0\}.$$

Let $W_0 \subset H$ be a symmetric neighbourhood of zero with

$$W_0 + W_0 + W_0 \subset W$$

and $U \subset G$ be a neighbourhood of zero such that $q(U) \subset W_0$, (2) and (3) hold.

Take $x, y \in G$ with $x \perp y$ and, making use of (3) and (2), choose an $n \in \mathbb{N}$ such that

$$2^{-n}x, \ 2^{-n}y, \ 2^{-n}(x+y) \in U.$$

Then

68

$$q(2^{-n}(x+y)) - q(2^{-n}x) - q(2^{-n}y) \in W_0 - W_0 - W_0 \subset W_0$$

On the other hand, by (11) and (4),

$$q(2^{-n}(x+y)) - q(2^{-n}x) - q(2^{-n}y) \in f(2^{-n}(x+y)) - f(2^{-n}x) - f(2^{-n}y) + K = K$$

Consequently,

$$q(2^{-n}(x+y)) - q(2^{-n}x) - q(2^{-n}y) = 0.$$

Moreover, by (12),

$$q(2^k z) = 2^{2k} q(z)$$
 for $z \in G$ and $k \in \mathbb{N}$.

This yields

$$q(x+y) - q(x) - q(y) = 2^{2n}(q(2^{-n}(x+y)) - q(2^{-n}x) - q(2^{-n}y)) = 0$$

and, as $\frac{x}{2}$ and $\frac{y}{2}$ are also orthogonal,

$$b(x,y) = 4b\left(\frac{x}{2}, \frac{y}{2}\right) = 2\left(q\left(\frac{x}{2} + \frac{y}{2}\right) - q\left(\frac{x}{2}\right) - q\left(\frac{y}{2}\right)\right) = 0.$$

Part III: Uniqueness. Suppose $a_1: G \to H$ is additive and continuous, $b_1: G \times G \to H$ is biadditive, symmetric and continuous, and

$$f(x) - b_1(x, x) - a_1(x) \in K$$
 for $x \in G$. (13)

Putting

$$a_0 = a - a_1, \quad b_0 = b - b_1$$

we get in view of (5) and (13)

$$a_0(x) + b_0(x, x) \in K \quad \text{for } x \in G, \tag{14}$$

which jointly with additivity of a_0 and biadditivity of b_0 gives

$$a_0(2x) = (a_0(x) + b_0(x, x)) - (a_0(-x) + b_0(-x, -x)) \in K$$

for $x \in G$. Consequently, since (1) is a bijection, $a_0(G) \subset K$. Hence, taking into account that K is discrete and a_0 is continuous and vanishes at zero, we infer that a_0 vanishes on a neighbourhood of zero and making use of (H) we see that a_0 vanishes everywhere. Thus $a_1 = a$ and (14) takes the form

$$b_0(x,x) \in K$$
 for $x \in G$.

Reasoning as above we show that

$$b_0(x,x) = 0$$
 for $x \in G$,

whence

$$2b_0(x,y) = b_0(x+y,x+y) - b_0(x,x) - b_0(y,y) = 0$$

for $x, y \in G$ and, consequently,

$$b_0(x,y) = 4b_0\left(\frac{x}{2}, \frac{y}{2}\right) = 0$$

for $x, y \in G$, which means that $b_1 = b$.

AEM

Vol. 78 (2009)

References

- K. BARON, Orthogonality and additivity modulo a discrete subgroup, Aequationes Math. 70 (2005), 189–190.
- [2] K. BARON and PL. KANNAPPAN, On the Pexider difference, Fund. Math. 134 (1990), 247– 254.
- K. BARON and A. KUCIA, On regularity of functions connected with orthogonal additivity, Funct. Approx. Comment. Math. 26 (1998), 19–24.
- [4] K. BARON and P. VOLKMANN, On orthogonally additive functions, Publ. Math. Debrecen 52 (1998), 291–297.
- [5] J. BRZDĘK, On the Cauchy difference, Glasnik Mat. Ser. III 27 (47) (1992), 263-269.
- [6] J. BRZDĘK, On orthogonally exponential functionals, Pacific J. Math. 181 (1997), 247-267.
- [7] J. RÄTZ, On orthogonally additive mappings, Aequationes Math. 28 (1985), 35-49.

W. Wyrobek Institute of Mathematics Silesian University Bankowa 14 PL-40 007 Katowice Poland e-mail: wwyrobek@math.us.edu.pl

Manuscript received: August 28, 2007 and, in final form, January 2, 2008.