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Summary. Under appropriate conditions on the abelian groups G and H and the orthogonality
⊥ ⊂ G2 we prove that a function f : G → H continuous at a point is orthogonally additive
modulo a discrete subgroup K if and only if there exist a unique continuous additive function
a : G → H and a unique continuous biadditive and symmetric function b : G×G → H such that
f(x) − b(x, x) − a(x) ∈ K for x ∈ G and b(x, y) = 0 for x, y ∈ G such that x ⊥ y.
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In this paper we work with the following orthogonality proposed by K. Baron and
P. Volkmann in [4]:

Let G be a group such that the mapping

x 7→ 2x, x ∈ G, (1)

is a bijection onto the group G. A relation ⊥ ⊂ G2 is called orthogonality if it
satisfies the following two conditions:

(O) 0 ⊥ 0; and from x ⊥ y the relations −x ⊥− y, x
2
⊥ y

2
follow.

(P) If an orthogonally additive function from G to an abelian group is odd,
then it is additive; if it is even, then it is quadratic.

According to Theorems 5 and 6 from [7] the orthogonality considered by J.
Rätz in [7] satisfies both (O) and (P).

Throughout this paper for a subset U of a given group and for n ∈ N the
symbol nU denotes the set {nx : x ∈ U}.

Our main result reads as follows:
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Theorem 1. Assume that G is an abelian topological group such that the mapping

(1) is a homeomorphism and the following condition holds:

(H) every neighbourhood of zero in G contains a neighbourhood U of zero such

that

U ⊂ 2U (2)

and

G =
⋃

{2nU : n ∈ N}. (3)

Assume ⊥ ⊂ G2 is an orthogonality, H is an abelian topological group and K is a

discrete subgroup of H. Then a function f : G → H continuous at a point satisfies

f(x + y) − f(x) − f(y) ∈ K for x, y ∈ G such that x ⊥ y (4)

if and only if there exist a continuous additive function a : G → H and a contin-

uous biadditive and symmetric function b : G × G → H such that

f(x) − b(x, x) − a(x) ∈ K for x ∈ G (5)

and

b(x, y) = 0 for x, y ∈ G such that x ⊥ y. (6)

Moreover, the functions a and b are uniquely determined.

Note that this theorem generalizes Theorem 2.9 from [6] and, in view of The-
orem 9 from [7] and Theorem 4.2 from [3], also implies the result obtained in [1].

The proof of Theorem 1 will be presented after some lemmas. The first three
lemmas and Lemma 4(i) are very similar to some results from [2], [6] and [5],
but for the reader’s convenience we formulate them explicitly; however, we omit
their proofs. Note that Lemma 1(ii) [6, Lemma 2.3] is applied in the proof of
Lemma 2 [6, Proposition 2.4], Lemma 1(i) [2, Lemma 1] and Lemma 2 in the
proof of Lemma 3 [2, Theorem 3; 6, Theorem 2.6] and Lemma 3 in the proof of
Lemma 4. Our Lemma 4(ii) can be proved in the same way as Lemma 4(i) [5,
Lemma 4], so we also omit the proof.

Lemma 1. Assume that G is an abelian group such that (1) is a bijection onto

G, H is an abelian group and U ⊂ G is a set with properties (2) and (3).
(i) If f : U → H satisfies

f(x + y) = f(x) + f(y) for x, y ∈ U with x + y ∈ U,

then it has a unique extension to an additive mapping of G into H.

(ii) If f : U → H satisfies

f(x + y) + f(x − y) = 2f(x) + 2f(y) for x, y ∈ U with x + y, x − y ∈ U

and f(0) = 0, then it has a unique extension to a quadratic mapping of G into H.
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Lemma 2. Assume that G is an abelian group such that (1) is a bijection onto

G, H is an abelian group, K is a subgroup of H, U ⊂ G is a set with properties

(2) and (3) and W is a subset of H such that

0 ∈ W, W = −W and (W + W + W + W + W + W ) ∩ K = {0}.

If f : G → H satisfies

f(U) − f(0) ⊂ K + W

and

f(x + y) + f(x − y) − 2f(x) − 2f(y) ∈ K for x, y ∈ G, (7)

then 2f(0) ∈ K and there exists a quadratic function q : G → H such that

f(x) − q(x) − f(0) ∈ K for x ∈ G, (8)

q(0) = 0 and q(U) ⊂ W .

Lemma 3. Assume that G is an abelian topological group such that (1) is a

homeomorphism and (H) holds, H is an abelian topological group and K is a

discrete subgroup of H.
(i) If f : G → H is continuous at zero and

f(x + y) − f(x) − f(y) ∈ K for x, y ∈ G,

then there exists a continuous additive function a : G → H such that

f(x) − a(x) ∈ K for x ∈ G.

(ii) If a function f : G → H continuous at zero satisfies (7), then there exists

a unique quadratic function q : G → H continuous at zero such that q(0) = 0 and

(8) holds.

In the rest of this paper we consider for an abelian topological group H and a
subgroup K of H , the quotient group H/K with the quotient topology:

{W ⊂ H/K : p−1(W ) is an open subset of H},

where p : H → H/K is the canonical mapping: p(x) = x + K.

Lemma 4. Assume that G is an abelian topological group such that (1) is a

homeomorphism and (H) holds, H is an abelian topological group and K is a

discrete subgroup of H.

(i) If A : G → H/K is a continuous additive function, then there exists a

continuous additive function a : G → H such that

a(x) ∈ A(x) for x ∈ G.

(ii) If Q : G → H/K is a function which is continuous at zero and Q(0) = K,

then there exists a continuous at zero quadratic function q : G → H such that

q(0) = 0 and

q(x) ∈ Q(x) for x ∈ G.
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The proof of the next lemma was kindly communicated to me by K. Baron.

Lemma 5. Assume that G is an abelian topological group such that (1) is a

homeomorphism and (H) holds and H is an abelian topological group. If a function

b : G × G → H is biadditive and continuous at (0, 0), then it is continuous.

Proof. First we prove that b(x, ·) is continuous at zero for every x ∈ G. Take
x0 ∈ G and a neighbourhood W ⊂ H of zero. It follows from the continuity at
zero of b and from (H) that there exists a neighbourhood U ⊂ G of zero such that
(3) and

b(U × U) ⊂ W

hold. Consequently x0 = 2nu0 with an n ∈ N and a u0 ∈ U , and for u ∈ U we
have

b(x0, 2
−nu) = b(2nu0, 2

−nu) = 2nb(u0, 2
−nu) = b(u0, u) ∈ W.

Hence

b(x0, 2
−nU) ⊂ W,

which shows that b(x0, ·) is continuous at zero. Clearly, the same concerns b(·, y0)
for every y0 ∈ G. To finish the proof it is enough to observe now that

b(x, y) − b(x0, y0) = b(x − x0, y0) + b(x − x0, y − y0) + b(x0, y − y0)

holds for x, y, x0, y0 ∈ G. �

Our last lemma generalizes Theorem 4.3 from [3].

Lemma 6. Assume that G is an abelian topological group such that (1) is a

homeomorphism and (H) holds, ⊥ ⊂ G2 is an orthogonality and H is an abelian

topological group. If an orthogonally additive function f : G → H is continuous at

some point, then it is continuous; more precisely, it is of the form

f(x) = a(x) + b(x, x) for x ∈ G, (9)

where a : G → H is a continuous additive function, b : G×G → H is a continuous

biadditive and symmetric function and (6) holds.

Proof. According to Theorem 1 from [4] the function f has form (9), where a :
G → H is additive, b : G × G → H is biadditive, symmetric and satisfies (6);
moreover,

b(x, y) = 2
(

f
(x + y

4

)

+ f
(−x − y

4

)

− f
(x − y

4

)

− f
(−x + y

4

))

for x, y ∈ G.

(10)
Let x0 ∈ G be a continuity point of f . It follows from (9) that

f(x + x0) − f(x) − f(x0) = 2b(x, x0) for x ∈ G,
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whence continuity at zero of f + 2b(·, x0) follows. Consequently also the function

x 7→ f(−x) + 2b(−x, x0), x ∈ G,

is continuous at zero. Summing up those two functions we get continuity at zero
of

x 7→ f(x) + f(−x), x ∈ G.

Since (1) is a homeomorphism, this jointly with (10) gives continuity at (0, 0) of
b and applying Lemma 5 we see that b is continuous (at each point of G × G).
Hence and from (9) continuity of a (at x0 and, consequently, everywhere) follows.
This ends the proof. �

Proof of Theorem 1. The proof of the “if” part is easy, so we omit it. The “only
if” part is divided into Parts I and II.

Part I. Assume that f satisfies (4) and define the function f̂ : G → H/K by
the formula

f̂ = p ◦ f.

Clearly f̂ is continuous at a point, and (4) implies that f̂ is orthogonally additive.
According to Lemma 6 there exist a continuous additive function â : G → H/K
and a continuous quadratic function q̂ : G → H/K such that q̂(0) = K and

f̂(x) = â(x) + q̂(x) for x ∈ G.

By Lemma 4 we get a continuous additive function a : G → H and a quadratic
function q : G → H continuous at zero such that q(0) = 0,

p ◦ a = â and p ◦ q = q̂.

Consequently, f(x) − q(x) − a(x) + K = f̂(x) − q̂(x) − â(x) = K, i.e.,

f(x) − q(x) − a(x) ∈ K for x ∈ G. (11)

It follows from Lemma 2 from [4] that q has the form

q(x) = b(x, x) for x ∈ G, (12)

where b : G× G → H is biadditive, symmetric and continuous at (0, 0). Applying
Lemma 5 we see that b is continuous.

Part II. Now we prove that q is orthogonally additive and that (6) holds.
Since K is discrete, there exists a neighbourhood W ⊂ H of zero such that

K ∩ W = {0}.

Let W0 ⊂ H be a symmetric neighbourhood of zero with

W0 + W0 + W0 ⊂ W

and U ⊂ G be a neighbourhood of zero such that q(U) ⊂ W0, (2) and (3) hold.
Take x, y ∈ G with x ⊥ y and, making use of (3) and (2), choose an n ∈ N

such that
2−nx, 2−ny, 2−n(x + y) ∈ U.
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Then
q(2−n(x + y)) − q(2−nx) − q(2−ny) ∈ W0 − W0 − W0 ⊂ W.

On the other hand, by (11) and (4),

q(2−n(x + y)) − q(2−nx) − q(2−ny) ∈ f(2−n(x + y))

−f(2−nx) − f(2−ny) + K = K.

Consequently,
q(2−n(x + y)) − q(2−nx) − q(2−ny) = 0.

Moreover, by (12),

q(2kz) = 22kq(z) for z ∈ G and k ∈ N.

This yields

q(x + y) − q(x) − q(y) = 22n(q(2−n(x + y)) − q(2−nx) − q(2−ny)) = 0

and, as x
2

and y

2
are also orthogonal,

b(x, y) = 4b
(x

2
,
y

2

)

= 2
(

q
(x

2
+

y

2

)

− q
(x

2

)

− q
(y

2

))

= 0.

Part III: Uniqueness. Suppose a1 : G → H is additive and continuous, b1 :
G × G → H is biadditive, symmetric and continuous, and

f(x) − b1(x, x) − a1(x) ∈ K for x ∈ G. (13)

Putting
a0 = a − a1, b0 = b − b1,

we get in view of (5) and (13)

a0(x) + b0(x, x) ∈ K for x ∈ G, (14)

which jointly with additivity of a0 and biadditivity of b0 gives

a0(2x) = (a0(x) + b0(x, x)) − (a0(−x) + b0(−x,−x)) ∈ K

for x ∈ G. Consequently, since (1) is a bijection, a0(G) ⊂ K. Hence, taking into
account that K is discrete and a0 is continuous and vanishes at zero, we infer that
a0 vanishes on a neighbourhood of zero and making use of (H) we see that a0

vanishes everywhere. Thus a1 = a and (14) takes the form

b0(x, x) ∈ K for x ∈ G.

Reasoning as above we show that

b0(x, x) = 0 for x ∈ G,

whence
2b0(x, y) = b0(x + y, x + y) − b0(x, x) − b0(y, y) = 0

for x, y ∈ G and, consequently,

b0(x, y) = 4b0

(x

2
,
y

2

)

= 0

for x, y ∈ G, which means that b1 = b. �
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