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Abstract. Under appropriate conditions on Abelian topological groups G

and H, an orthogonality ⊥ ⊂ G2 and a σ-algebra M of subsets of G we decompose
an M-measurable function f : G → H which is orthogonally additive modulo a
discrete subgroup K of H into its continuous additive and continuous quadratic
part (modulo K).

1. Introduction

Throughout all the paper G and H are Abelian topological groups, K is
a discrete subgroup of H.

Following K. Baron and P. Volkmann [2], in the case when G is uniquely
2-divisible, a relation ⊥ ⊂ G2 is called orthogonality if it satis�es the following
two conditions:

0 ⊥ 0; and from x ⊥ y the relations −x ⊥− y, x
2 ⊥ y

2 follow.(O)
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{If an orthogonally additive function from G to an Abelian group is
odd, then it is additive; if it is even, then it is quadratic.(P)

For instance, the orthogonality considered by J. Rätz in [13] ful�ls both
(O) and (P), according to Theorems 5 and 6 therein. For further examples
the reader is referred to [2].

All along we assume that M is a σ-algebra and I is a proper σ-ideal of
subsets of G which ful�l the condition:

(S) 0 ∈ Int (A−A), if A ∈ M \ I.

We deal with the problem: under what assumptions an M-measurable
mapping f : G → H which is orthogonally additive modulo K, i.e.

(1) f(x + y)− f(x)− f(y) ∈ K for x, y ∈ G such that x ⊥ y,

admits a factorization of the type

(2) f(x)− b(x, x)− a(x) ∈ K for x ∈ G

with a continuous additive a : G → H and a separately/jointly continuous
biadditive b : G×G → H?

The main aim of this paper is to establish representation (2) with a jointly
continuous biadditive function b. This is done in the next section under some
reasonable assumptions (on G or M). In the third section we obtain this
decomposition with a separately continuous b under somewhat weaker con-
ditions.

2. Factorization with a jointly continuous biadditive term

The �rst lemma is a kind of folklore and has been established in special
cases when M is the σ-algebra of subsets having the Baire property or being
Christensen measurable. In both cases the key property is condition (S),
where I is the family of meager or Christensen zero subsets of G, respectively
(see [12, Theorem 9.9] and [8, Theorem 2] with [10]). For the proof of this
lemma see e.g. [12, Theorem 9.10].

Lemma 1. Every M-measurable homomorphism from G into a separable
topological group is continuous.

Lemma 2. Let X be a topological space with a countable base. If the
functions f, g : G → X are M-measurable, then so is the function (f, g) :
G → X ×X. Consequently, if Y is a topological space and ϕ : X ×X → Y
is a Borel function, then ϕ(f, g) is M-measurable.
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Proof. It is enough to observe that if B is a countable base of X, then
{V ×W : V, W ∈ B} is a countable base of X ×X. ¤

Lemma 3. Assume H is separable metric and at least one of the condi-
tions holds:

(i) G is a �rst countable Baire group;
(ii) G is separable metric;
(iii) G is metric and M contains all Borel subsets of G.
If a biadditive function b : G×G → H has M-measurable sections b(x, ·),

b(·, y) for all x, y ∈ G, then b is continuous.
Proof. If G is a �rst countable Baire group, then [9, Proposition 2.3]

implies that (G,G, H) forms a Namioka�Troallic triple. Our assertion then
follows from the fact that the sections of b being M-measurable are, accord-
ing to Lemma 1, continuous, and from the H. R. Ebrahimi-Vishki result [9,
Theorem 3.2].

Let dG, dH stand for invariant metrics for G, H, respectively (cf. [11,
Theorem 8.3]), B(r) =

{
z ∈ G : dG(z, 0) 5 r

}
for positive r ∈ R and

Fn,k = {x ∈ G : dH

(
b(x, u), b(x, v)

)
5 2−n for all u, v ∈ B

(
2−k

)}
for n, k ∈ N . By Lemma 1, the sections b(·, u) are continuous for u ∈ G,
whence Fn,k are closed for n, k ∈ N. Consequently, in case (iii) we have

(3) Fn,k ∈ M for n, k ∈ N.

To show that (3) holds also in case (ii) for every k ∈ N consider a countable
and dense subset Dk of B(2−k). Then, due to continuity of b(x, ·) for x ∈ G,
we have

Fn,k =
⋂

(u,v)∈Dk

{x ∈ G : dH

(
b(x, u), b(x, v)

)
5 2−n} for n, k ∈ N.

Moreover, as follows from Lemma 2, the mapping G 3 x 7→ dH

(
b(x,u), b(x, v)

)
is M-measurable for u, v ∈ G. Hence we have (3) also in case (ii).

Because of the continuity of b(x, ·), we have

G =
⋃

k∈N
Fn,k for n ∈ N.

Consequently, if n ∈ N, then Fn,k(n) ∈ M \ I for at least one k(n) ∈ N. This
fact, jointly with condition (S), yield

(4) 0 ∈ Int (Fn,k(n) − Fn,k(n)).
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On the other hand, if k, n ∈ N, n = 2, then for all x, x′ ∈ Fn,k and all
u, v ∈ B(2−k) we have

dH

(
b(x− x′, u), b(x− x′, v)

)
= dH

(
b(x, u)− b(x′, u), b(x, v)− b(x′, v)

)

= dH

(
b(x, u), b(x, v) + b(x′, u− v)

)

5 dH

(
b(x, u), b(x, v)

)
+ dH

(
b(x, v), b(x, v) + b(x′, u− v)

)

= dH

(
b(x, u), b(x, v)

)
+ dH

(
b(x′, v), b(x′, u)

)
5 2−(n−1),

which shows that Fn,k−Fn,k ⊂ Fn−1,k. Combining this with (4) we infer that
for all n ∈ N there is k(n) ∈ N and r(n) > 0 such that

(5) dH

(
b(x, u), b(x, v)

)
5 2−n for x ∈ B

(
r(n)

)
and u, v ∈ B(2−k(n)).

Fix any (x, u) and (x′, v) from B(1
2r(n))×B(2−k(n)). Then

x− x′ ∈ B
(
0, r(n)

)

and (5) yields

dH

(
b(x, u), b(x′, v)

)
5 dH

(
b(x, u), b(x, v)

)
+ dH

(
b(x, v), b(x′, v)

)

5 2−n + dH

(
b(x− x′, v), 0

)

= 2−n + dH

(
b(x− x′, v), b(x− x′, 0)

)
5 2−(n−1).

This proves the continuity of b at (0, 0). Since

b(x, y)− b(x0, y0) = b(x− x0, y0) + b(x− x0, y − y0) + b(x0, y − y0)

for x, y ∈ G and b(·, y0), b(x0, ·) are continuous, b is therefore continuous at
every point (x0, y0) ∈ G×G. ¤

Note that in the special case when M consists of all sets with the Baire
property, the assumption that G is Baire, or equivalently G is non-meager
(see e.g. [12, Proposition 9.8]), corresponds to our hypothesis G 6∈ I.

A key role in the above proof is played by condition (S). Even in the case
when G is a real separable normed space and M is the σ-algebra of its Borel
subsets, a suitable σ-ideal I which satis�es (S) does not have to exist. Con-
sider, for instance, the space of all real polynomials of one variable with the
norm ‖f‖ =

∫ 1
0

∣∣f(t)
∣∣ dt and the bilinear functional B(f, g) =

∫ 1
0 f(t)g(t) dt

which is separately but not jointly continuous. In view of our last lemma,
such a space does not admit a σ-ideal I which would ful�l condition (S). For
the essentiality of the above assumptions cf. also Example 3.3 in [9].
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Lemma 4. If H is separable metric, then the quotient group H/K is an
Abelian separable metric group.

Proof. Since K is closed in H, the group H/K is Hausdor� (see [11,
Theorem 5.21]). Because H has a countable base, so has also H/K. In
the light of the Birkho��Kakutani theorem [11, Theorem 8.3], H/K is thus
metrizable. Separability follows again from the existence of a countable base.
¤

Now we are prepared to proceed to our main result. The technical as-
sumptions appearing below have been already considered (see [7], [3], [6] and
[14]). In the last section we present a counterexample showing that condition
(G2) is essential.

Theorem 1. Assume H is separable metric,
(G1) the mapping G 3 x 7→ 2x is a homeomorphism,
(G2) every neighbourhood of zero in G contains a zero neighbourhood U

such that

(6) U ⊂ 2U and G =
⋃
{2nU : n ∈ N},

(G3) either G is a �rst countable Baire group, or G is metric separable,
or G is metric and M contains all Borel subsets of G,

(G4) x± 2A ∈ M for all x ∈ G and A ∈ M.
Then an M-measurable function f : G → H satis�es (1) if and only if

there exist a continuous additive function a : G → H and a continuous biad-
ditive symmetric function b : G×G → H such that the factorization (2) is
valid, and

(7) b(x, y) = 0 for x, y ∈ G such that x ⊥ y;

moreover, the functions a and b are uniquely determined.
Proof. De�ne f̂ : G → H/K as f̂ = p ◦ f where p stands for the canon-

ical projection. Condition (1) yields the orthogonal additivity of f̂ . By [2,
Theorem 1], there exist an additive function â : G → H/K and a quadratic
function q̂ : G → H/K such that f̂ = â + q̂. Moreover the function â is de-
�ned by the formula

â(x) = f̂
(x

2

)
− f̂

(
−x

2

)

and q̂(x) = b̂(x,x), x ∈ G, with a biadditive and symmetric function b̂ : G×G
→ H/K given by

b̂(x, y) = 2
[
f̂

(
x + y

4

)
+ f̂

(−x− y

4

)
− f̂

(
x− y

4

)
− f̂

(−x + y

4

)]
.
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The above equalities, jointly with M-measurability of f̂ , condition (G4) and
Lemma 2, imply the M-measurability of â and the sections b̂(x, ·) for every
x ∈ G. By Lemmas 4, 1 and 3, the functions â and b̂ are continuous.

According to [14, Lemma 4] there exist a continuous additive function
a : G → H and a continuous at zero quadratic function q : G → H such that
q(0) = 0 and p ◦ a = â, p ◦ q = q̂. Hence f(x)− q(x)− a(x) ∈ K for x ∈ G.
As in the proof of [14, Theorem 1] we recall [2, Lemma 2] and [14, Lemma 5]
to obtain q(x) = b(x, x) with a continuous biadditive symmetric function
b : G×G → H. To �nish the proof of the �only if� part it remains to apply
Lemma 5 given below.

The proof of the �if� part is a simple veri�cation. ¤
Lemma 5. Assume (G1) and (G2). Let the functions a1, a2 : G → H be

continuous additive and let b1, b2 : G×G → H be biadditive symmetric and
continuous in each variable.

(i) If
(
a1(x)+ b1(x,x)

) − (
a2(x)+ b2(x,x)

) ∈ K for x ∈ G, then a1 = a2

and b1 = b2.
(ii) If b1(x, y) ∈ K for x, y ∈ G such that x ⊥ y, then b1(x, y) = 0 for

x, y ∈ G such that x⊥ y.
Proof. (i) Let a := a1−a2, b := b1− b2. For x ∈ G we have a(x)+ b(x,x)

∈ K. Hence
a(2x) =

(
a(x) + b(x, x)

) − (
a(−x) + b(−x,−x)

) ∈ K,

which implies a(G) ⊂ K. Now, condition (G2) guarantees that the function
a, being continuous and additive, is constantly equal to zero.

We have just obtained that b(x, x) ∈ K for x ∈ G, thus
b(x, 2y) = 2b(x, y) = b(x + y, x + y)− b(x, x)− b(y, y) ∈ K for x, y ∈ G.

Arguing as above we infer that the section b(·, 2y) is constantly equal to zero
for every y ∈ G, so b = 0.

(ii) Fix x, y ∈ G such that x ⊥ y. Choose zero neighbourhoods W ⊂ G
such that K ∩W = {0} and U ⊂ G such that

b(U, y) ⊂ W and G =
⋃
{2nU : n ∈ N}.

For some n ∈ N we have x ∈ 2nU , whence b( x
2n , y) ∈ W . Plainly, 2−nx ⊥

2−ny, which implies

b
( x

2n
, y

)
= 2nb

( x

2n
,

y

2n

)
∈ K.

Consequently, b(2−nx, y) = 0 and

b(x, y) = 2nb
( x

2n
, y

)
= 0,

as desired. ¤
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As a consequence of Theorem 1 we obtain the following result.
Corollary 1. Assume H is separable metric and (G1), (G2) hold. If

either G is a �rst countable Baire group and f : G → H is Baire measurable,
or G is a Polish group and f : G → H is Christensen measurable, then f sat-
is�es (1) if and only if there exist a continuous additive function a : G → H
and a continuous biadditive symmetric function b : G×G → H such that (2)
and (7) hold; moreover, the functions a and b are uniquely determined.

Baire and Christensen measurable solutions of (1) have been already ex-
amined by J. Brzd�ek in [4] for the orthogonality given by an inner product
and in [5] for a more abstract orthogonality in linear topological spaces.

3. Factorization with a separately continuous biadditive term

Under weaker assumptions we obtain the factorization (2) with a sepa-
rately continuous biadditive term only (as it is in [5, Theorem 1]).

Theorem 2. Assume (G1), (G2), (G4) and let H be separable metric.
Then an M-measurable function f : G → H satis�es (1) if and only if there
exist a continuous additive function a : G→ H and a function b : G×G→ H
biadditive symmetric and continuous in each variable such that the factoriza-
tion (2) is valid and (7) holds; moreover, the functions a and b are uniquely
determined.

To get this result we argue as in the proof of Theorem 1 but without
referring to Lemma 3 and applying the following Lemma 6 instead of [14,
Lemma 4(ii)].

Lemma 6. Assume (G1) and (G2). If b̂ : G → H/K is biadditive, sym-
metric and continuous in each variable, then there exists a function b : G×G
→ H biadditive, symmetric and continuous in each variable such that

(8) b(x, y) ∈ b̂(x, y) for (x, y) ∈ G×G.

Proof. It follows from [14, Lemma 4(i)] that there exists a function
b : G×G → H such that for every y ∈ G the function b(·, y) is additive,
continuous and (8) holds. To show that b is symmetric �x x, y ∈ G and a
neighbourhood W of zero in H with

(W + W −W ) ∩K = {0}.

Since b(·, y)−1(W )∩ b(·, 2y)−1(W )∩ b(·, x)−1(W ) is a neighbourhood of zero,
it follows from (G2) that there exists a zero neighbourhood U such that

U ⊂ b(·, y)−1(W ) ∩ b(·, 2y)−1(W ) ∩ b(·, x)−1(W )
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and (6) holds. In particular, x = 2nu1 and y = 2nu2 for some n ∈ N and
u1, u2 ∈ U . Moreover,

2b(u1, y)− b(u1, 2y) ∈ (2W −W ) ∩ (
2b̂(u1, y)− b̂(u1, 2y)

)

= (2W −W ) ∩K = {0},

whence 2b(u1, y) = b(u1, 2y) and, consequently,

2b(x, y) = 2b(2nu1, y) = 2n · 2b(u1, y) = 2nb(u1, 2y) = b(x, 2y).

Now, having the equality b(x, 2y) = 2b(x, y) for any x, y ∈ G we see that

b(x, u2) = b(2nu1, u2) = b(u1, 2nu2) = b(u1, y) ∈ W,

whence

b(x, u2)− b(u2, x) ∈ (W −W ) ∩ (
b̂(x, u2)− b̂(u2, x)

)
= (W −W ) ∩K = {0}

and

b(x, y) = b(x, 2nu2) = 2nb(x, u2) = 2nb(u2, x) = b(2nu2, x) = b(y, x). ¤

As a consequence we obtain a corollary asserting that if G is Baire and
we consider the Baire measurability, then we do not need to assume the �rst
countability of G in order to get the desired factorization with a separately
continuous biadditive term only (cf. Corollary 1).

Corollary 2. Assume H is separable metric and (G1), (G2) hold. If
G is Baire and f : G → H is Baire measurable, then f satis�es (1) if and
only if there exist a continuous additive function a : G → H and a function
b : G×G → H biadditive symmetric and continuous in each variable such
that (2) and (7) hold; moreover, the functions a and b are uniquely deter-
mined.

If we take ⊥ = G2, then Theorem 2 gives us Corollary 3 below. Of course,
again it leads to another conclusions in the case when the measurability that
we consider is Baire or Christensen.

Corollary 3. Assume (G1), (G2), (G4) and let H be separable metric.
Then an M-measurable function f : G → H satis�es

f(x + y)− f(x)− f(y) ∈ K for x, y ∈ G

if and only if there exists a (unique) continuous additive function a : G → H
such that

f(x)− a(x) ∈ K for x ∈ G.
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4. A counterexample

Hypothesis (G2) is supposed to be a substitute for the condition that ev-
ery zero neighbourhood is absorbing � the condition which we dispose of in
linear topological spaces. The following example shows that we cannot run
too far away from this linear topological structure. Although for the sim-
plest counterexample we may consider (R,+) with the discrete topology, we
present a more interesting one. Our aim is to demonstrate that the validity
of all of the assumptions, just with the exception of (G2), does not guar-
antee the factorization (2) even if the domain is a �nice� structure with a
non-discrete topology.

Let RN stand for the group of all real sequences (with the ordinary addi-
tion). In this group we introduce the so called Krull topology, the Tychonov
(product) topology with the discrete topology in R. Observe that we obtain
in this manner an Abelian topological group metrizable by a complete met-
ric. In particular, it is a Baire group. Note also that the family {VI : I ∈ F},
where

F := {I ⊂ N : card I < ℵ0}
and

VI :=
{

(xn)n∈N ∈ RN : xi = 0 for i ∈ I
}

for I ∈ F
is a zero neighbourhood basis.

Clearly, RN is uniquely 2-divisible (it is even a real linear space) and the
orthogonality ⊥ de�ned as RN × RN ful�ls both (O) and (P). Obviously, the
mapping RN 3 x 7→ 2x is a homeomorphism. However, since VI is a subgroup
of RN, we have

⋃
{nVI : n ∈ N} = VI $ RN for I ∈ F , I 6= ∅.

Let B be the σ-algebra of all Borel subsets of RN and let J be the (proper)
σ-ideal of all meager subsets of RN. The classical theorem of Pettis [12, The-
orem 9.9] asserts that 0 ∈ Int (A−A), whenever A ∈ B \ J.

Let ϕ : R→ R be any function ful�lling the congruence

ϕ(x + y)− ϕ(x)− ϕ(y) ∈ Z for x, y ∈ R
which is not a sum of an additive and a Z-valued function (see [1, Remark 2]
for a suitable example). De�ne f : RN → R by the formula

f(x) = ϕ(x1) for x = (xn)n∈N.

Plainly, f is a continuous (hence Borel) solution of the congruence

f(x + y)− f(x)− f(y) ∈ Z for x, y ∈ RN.
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Now, suppose that f(x)− b(x, x)− a(x) ∈ Z for x ∈ RN with an additive
function a : RN → R and a function b : RN×RN → R which ful�ls (7). Since
our orthogonality is the trivial one, we have b = 0 and hence

(9) f(x)− a(x) ∈ Z for x ∈ RN.

De�ning α : R→ R by α(x) = a(x, 0, 0, . . .) we see that it is additive and (9)
implies that

ϕ(x)− α(x) = f(x, 0, 0, . . .)− a(x, 0, 0, . . .) ∈ Z for x ∈ R,

contrary to the choice of ϕ.
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