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a b s t r a c t

If a function f , acting on a Euclidean spaceRn, is ‘‘almost’’ orthogonally additive in the sense
that f (x + y) = f (x) + f (y) for all (x, y) ∈ ⊥ \ Z , where Z is a ‘‘negligible’’ subset of the
(2n − 1)-dimensional manifold ⊥ ⊂ R2n, then f coincides almost everywhere with some
orthogonally additive mapping.
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1. Introduction

Let (E, ⟨·|·⟩) be a real inner product space, dim E ≥ 2, and let (G,+) be an Abelian group. A function f : E → G is called
orthogonally additive iff it satisfies the equation

f (x + y) = f (x)+ f (y) (1)

for all (x, y) ∈ ⊥ := {(x, y) ∈ E2
: ⟨x|y⟩ = 0}. It was proved independently by R. Ger, Gy. Szabó and J. Rätz [1, Corollary 10]

that such a function has the form

f (x) = a

∥x∥2

+ b(x) (2)

with some additive mappings a:R → G, b: E → G provided that G is uniquely 2-divisible. This divisibility assumption was
dropped by K. Baron and J. Rätz [2, Theorem 1].

We are going to deal with the situation where equality (1) holds true for all orthogonal pairs (x, y) outside from a
‘‘negligible’’ subset of⊥. Considerations of this type go back to a problem [3], posed by P. Erdős, concerning the unconditional
version of Cauchy’s functional equation (1). Itwas solvedbyN.G. de Bruijn [4] and, independently, byW. B. Jurkat [5], and also
generalized by R. Ger [6]. Similar research concerning mappings which preserve inner product was made by J. Chmieliński
and J. Rätz [7] and by J. Chmieliński and R. Ger [8].

While studying unconditional functional equations, ‘‘negligible’’ sets are usually understood as the members of some
proper linearly invariant ideal.Moreover, any such ideal of subsets of an underlying space X automatically generates another
such ideal of subsets ofX2 via the Fubini theorem (see R. Ger [9] andM. Kuczma [10, Section 17.5]). However,we shall assume
that equation (1) is valid for (x, y) ∈ ⊥ \ Z , where Z is ‘‘negligible’’ in ⊥ (not only in E2), and therefore the structure of ⊥

should be appropriate to work with ‘‘linear invariance’’ and Fubini-type theorems. This is the reason why we restrict our
attention to Euclidean spaces Rn and regard ⊥ as a smooth (2n − 1)-dimensional manifold lying in R2n.
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2. Preliminary results

For completeness let us recall some definitions concerning the manifold theory (for further information see, e.g., R.
Abraham, J. E. Marsden and T. Ratiu [11], and L. W. Tu [12]). Let S be a topological space; by an m-dimensional C∞-atlas we
mean a family A = {(Ui, ϕi)}i∈I such that {Ui}i∈I is an open covering of S, for each i ∈ I the mapping ϕi is a homeomorphism
which maps Ui onto an open subset of Rm, and for each i, j ∈ I the mapping ϕi ◦ ϕ

−1
j is a C∞-diffeomorphism defined on

ϕj(Ui ∩ Uj). Brouwer’s theorem of dimension invariance implies that each two atlases on S are of the same dimension.
We say that atlasesA1 andA2 are equivalent iffA1∪A2 is an atlas. AC∞-differentiable structureD on S is an equivalence

class of atlases on S; the union


D forms a maximal atlas on S and any of its elements is called an admissible chart. By a
C∞-differentiable manifold (briefly: manifold) M we mean a pair (S,D) of a topological space S and a C∞-differentiable
structure D on S; we shall then identifyM with the space S for convenience. A manifold is called anm-manifold iff its every
atlas ism-dimensional.

Having an m1-manifold M1 = (S1,D1) and an m2-manifold M2 = (S2,D2) we may define the product manifold M1 ×

M2 = (S1 × S2,D1 × D2), where the differentiable structure D1 × D2 is generated by the atlas
(U1 × U2, ϕ1 × ϕ2) : (Ui, ϕi) ∈


Di for i = 1, 2


.

Then M1 × M2 forms an (m1 + m2)-manifold. For an arbitrary set A ⊂ M1 × M2 and any point x ∈ M1 we use the notation
A[x] = {y ∈ M2 : (x, y) ∈ A}.

In what follows, we consider only manifolds M ⊂ Rn, for some n ∈ N, equipped with the natural topology and a
differentiable structure which is determined by the following condition: for every x ∈ M there is a C∞-diffeomorphism
ϕ defined on an open set U ⊂ Rn with x ∈ U such that ϕ(M ∩ U) = ϕ(U) ∩ (Rm

× {0}), wherem is the dimension ofM . In
particular, every open subset of Rn yields an n-manifold with the atlas consisting of a single identity map. Any set M ⊂ Rn

satisfying the above condition forms a submanifold of Rn in the sense of [11, Definition 3.2.1], or a regular submanifold of
Rn in the sense of [12, Definition 9.1]. Generally, if M1 is an m1-manifold and M2 is an m2-manifold, then M1 is called a
(regular) submanifold ofM2 iffM1 ⊂ M2 and for every x ∈ M1 there is an admissible chart (U, ϕ) ofM2 with x ∈ U such that
ϕ(M1 ∩ U) = ϕ(U) ∩ (Rm1 × {0}).

If M1 and M2 are manifolds with atlases A1 and A2, respectively, then a mapping Φ:M1 → M2 is said to be of the class
C∞ iff it is continuous and for all (U, ϕ) ∈ A1, (V , ψ) ∈ A2 the composition ψ ◦ Φ ◦ ϕ−1 is of the class C∞ (in the usual
sense) in its domain. This condition is independent of the choice of particular atlases generating differentiable structures
of M1 and M2; see [11, Proposition 3.2.6]. We say that Φ is a C∞-diffeomorphism iff Φ is a bijection between M1 and M2,
and bothΦ andΦ−1 are of the class C∞. According to the above explanation, such a definition is compatible with the usual
notion of a C∞-diffeomorphism. If any C∞-diffeomorphism betweenM1 andM2 exists, then we writeM1 ∼ M2. Of course,
in such a case the manifoldsM1 and M2 are of the same dimension.

Finally, a mapping Φ:M1 → M2 between an m1-manifold M1 and an m2-manifold M2 is called a C∞-immersion [C∞-
submersion] iff it is of the class C∞ and for every x ∈ M1 there exist admissible charts (U, ϕ) and (V , ψ) of M1 and M2,
respectively, such that x ∈ U,Φ(x) ∈ V , and the derivative of the function ψ ◦ Φ ◦ ϕ−1 at any point of ϕ(U) is an injective
[a surjective] linear mapping from Rm1 to Rm2 (see [12, Proposition 8.12] for another, equivalent definition). We will find
the following lemma useful; for the proof see R. W. R. Darling [13, Section 5.5.1].

Lemma 1. Let M1 be a submanifold of an open set U ⊂ Rn1 and M2 be a submanifold of an open set V ⊂ Rn2 . If Φ:U → V is a
C∞-immersion [C∞-submersion]withΦ(M1) ⊂ M2, then the restrictionΦ|M1 :M1 → M2 is aC∞-immersion [C∞-submersion].

Recall that given a non-empty set X a family I ⊂ 2X is said to be a proper σ -ideal iff the following conditions hold:
(i) X ∉ I ;
(ii) if A ∈ I and B ⊂ A, then B ∈ I ;
(iii) if Ak ∈ I for k ∈ N, then


∞

k=1 Ak ∈ I .

From now on we suppose that for each m ∈ N a family Im forms a proper σ -ideal of subsets of Rm satisfying the following
conditions:
(H0) {0} ∈ I1;
(H1) if ϕ is a C∞-diffeomorphism defined on an open set U ⊂ Rm and A ∈ Im, then ϕ(A ∩ U) ∈ Im;
(H2) ifm, n ∈ N and A ∈ Im+n, then {x ∈ Rm

: A[x] ∉ In} ∈ Im;
(H3) ifm, n ∈ N and A ∈ In, then Rm

× A ∈ Im+n.

Note that by condition (H1), non-empty open subsets of Rm do not belong to Im, whereas (H0) and (H1) imply that any
countable subset of Rm is in Im.

Remark 1. The conditions (H0)–(H3) are satisfied in the following cases:
(a) when Im consists of all first category subsets of Rm, for m ∈ N (in this case (H2) follows from the Kuratowski–Ulam

theorem);
(b) when Im consists of all Lebesgue measure zero subsets of Rm, for m ∈ N (in this case (H2) is just the classical Fubini

theorem).
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More generally, let µ be any measure defined on all Borel subsets of R and satisfying both (H0) and (H1). Let also

µm = µ⊗ · · · ⊗ µ  
m

be the mth product measure and µm be the completion of µm, for m ∈ N. Then (H0)–(H3) are also satisfied in the two
following cases:

(c) whenIm consists of all Borel subsets A ofRm withµm(A) = 0 (condition (H1) follows by induction from Fubini’s theorem
applied to the characteristic function of the Borel set ϕ(A ∩ U));

(d) when Im consists of all µm-negligible subsets of Rm, i.e., all µm-measurable sets A ⊂ Rm with µm(A) = 0 (if A ∈ Im
then A is contained in a Borel set having measure µm zero, thus condition (H1) follows as in the preceding case).

For an arbitrary m-manifold M ⊂ Rn (m ≤ n) with an atlas A = {(Ui, ϕi)}i∈I we define a proper σ -ideal IM ⊂ 2M by
putting

IM = {A ⊂ M : ϕi(A ∩ Ui) ∈ Im for each i ∈ I}. (3)

By condition (H1), this definition does not depend on the particular choice of A. Indeed, let {(Vj, ψj)}j∈J be another atlas
of M , equivalent to A. Fix any A ∈ IM and j ∈ J . With the aid of Lindelöf’s theorem we choose a countable set I0 ⊂ I
such that Vj ⊂


i∈I0

Ui. For each i ∈ I0 the mapping χi := ψj ◦ ϕ−1
i is a C∞-diffeomorphism on ϕi(Vj ∩ Ui) and since

Bi := ϕi(A∩ Vj ∩ Ui) ∈ Im, we haveψj(A∩ Vj ∩ Ui) = χi(Bi) ∈ Im. Consequently,ψj(A∩ Vj) =


i∈I0
ψj(A∩ Vj ∩ Ui) ∈ Im.

This shows that if A ∈ IM , thenψj(A∩ Vj) ∈ Im for each j ∈ J . Analogously we obtain the reverse implication. Note that, by
this definition, IRm = Im for eachm ∈ N.

Lemma 2. Let M1 be an m1-dimensional submanifold of an m2-manifold M2 ⊂ Rn. Then

(a) M1 ∈ IM2 , provided that m1 < m2;
(b) IM1 ⊂ IM2 .

Proof. (a) By the submanifold property, we may choose an atlas A of M2 such that ϕ(M1 ∩ U) = ϕ(U) ∩ (Rm1 × {0}) for
each (U, ϕ) ∈ A. Since (H0) and (H3) imply Rm1 × {0} ∈ Im2 , we get ϕ(M1 ∩ U) ∈ Im2 , as desired.

(b) The case m1 < m2 reduces to assertion (a). If m1 = m2, then for every admissible chart of M2 we have ϕ(A ∩ U) ∈

Im1 = Im2 . �

We can prove the following strengthening of condition (H1).

Lemma 3. If Φ:M1 → M2 is a C∞-diffeomorphism between manifolds M1 ⊂ Rn1 ,M2 ⊂ Rn2 , then for every A ∈ IM1 we have
Φ(A) ∈ IM2 .

Proof. Let A1 = {(Ui, ϕi)}i∈I and A2 = {(Vj, ψj)}j∈J be atlases generating the differentiable structures of M1 and M2,
respectively. Let also m be the dimension of M1 and M2. Fix j ∈ J; we are to prove that ψj(Φ(A) ∩ Vj) ∈ Im. Choose a
countable set I0 ⊂ I with A ⊂


i∈I0

Ui and for each i ∈ I0 define a C∞-diffeomorphism χi = ψj ◦ Φ ◦ ϕ−1
i . Then

ψj(Φ(A) ∩ Vj) ⊂


i∈I0

χi(ϕi(A ∩ Ui) ∩ Dom(χi)), (4)

where Dom(χi) stands for the domain of χi. Moreover, since A ∈ IM1 , we have ϕi(A ∩ Ui) ∈ Im thus (H1) implies that the
both sets in (4) belong to Im. �

Conditions (H1), (H2) imply a general version of Fubini’s theorem.

Lemma 4. Let M1 ⊂ Rn1 ,M2 ⊂ Rn2 be manifolds. If A ∈ IM1×M2 , then

{x ∈ M1 : A[x] ∉ IM2} ∈ IM1 .

Proof. Let {(Ui, ϕi)}i∈I and {(Vj, ψj)}j∈J be arbitrary countable atlases generating the differentiable structures ofM1 andM2,
respectively. Since A ∈ IM1×M2 , for each i ∈ I, j ∈ J we have

Bij := (ϕi × ψj)(A ∩ (Ui × Vj)) ∈ Im1+m2 .

Moreover,

Bij = {(ϕi(x), ψj(y)) ∈ Rm1+m2 : x ∈ Ui and y ∈ A[x] ∩ Vj}

for i ∈ I, j ∈ J . Suppose, in search of a contradiction, that

Z := {x ∈ M1 : A[x] ∉ IM2} ∉ IM1 .
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Then we may find i0 ∈ I with Z ∩ Ui0 ∉ IM1 . If for every j ∈ J the set

Cj := {x ∈ Z ∩ Ui0 : A[x] ∩ Vj ∉ IM2}

belonged to IM1 , then we would have

Z ∩ Ui0 = {x ∈ Z ∩ Ui0 : A[x] ∉ IM2} =


j∈J

Cj ∈ IM1 ,

which is not the case. Therefore, we may find j0 ∈ J with Cj0 ∉ IM1 . Define

B = {(ϕi0(x), ψj0(y)) ∈ Rm1+m2 : x ∈ Z ∩ Ui0 and y ∈ A[x] ∩ Vj0}

and note that B ⊂ Bi0,j0 , whence B ∈ Im1+m2 . However, ϕi0(Cj0) ∉ Im1 and for each x ∈ Cj0 and t = ϕi0(x)we have

B[t] = ψj0(A[x] ∩ Vj0) ∉ Im2 .

This yields a contradiction with (H2). �

Lemma 5. If Φ:M1 → M2 is a C∞-submersion between manifolds M1 ⊂ Rn1 ,M2 ⊂ Rn2 , then for every A ⊂ M1, A ∉ IM1 we
haveΦ(A) ∉ IM2 .

Proof. By Lindelöf’s theorem, there is a point x0 ∈ M1 such that for every its neighborhood U ⊂ M1 we have A ∩ U ∉ IM1 .
By the assumption, we may find admissible charts (U, ϕ) and (V , ψ) ofM1 andM2, respectively, such that x0 ∈ U,Φ(x0) ∈

V , ϕ(A ∩ U) ∉ Im1 and the derivative of ψ ◦Φ ◦ ϕ−1 at any point of ϕ(U) is a surjection from Rm1 onto Rm2 (m1,m2 being
the dimensions of M1,M2, respectively). Hence, obviously, m1 ≥ m2 and there is a sequence 1 ≤ i1 < · · · < im2 ≤ m1 such
that

∂(ψ ◦ Φ ◦ ϕ−1)

∂yi1 . . . ∂yim2

(ϕ(x0)) ≠ 0.

By decreasing the neighborhood U , we may guarantee that the above condition holds true for every x ∈ U in the place of x0,
and that the mapping ψ ◦ Φ ◦ ϕ−1 is defined on the whole ϕ(U). Let ψ ◦ Φ ◦ ϕ−1

= (G1, . . . ,Gm2) and define a function
F = (F1, . . . , Fm1):ϕ(U) → Rm1 by the formula

Fk(y) =


Gj(y) if k = ij for some j ∈ {1, . . . ,m2},
yk otherwise.

Then for each y ∈ ϕ(U)we have ∂F
∂y1 . . . ∂ym1

(y)
 =

∂(ψ ◦ Φ ◦ ϕ−1)

∂yi1 . . . ∂yim2

(y)

 ≠ 0,

thus, decreasing U as required, we may assume that F is a C∞-diffeomorphism. Enumerating the coordinates we may also
modify F in such a way that it is still a C∞-diffeomorphism and

F(ϕ(A ∩ U)) ⊂ (ψ ◦ Φ ◦ ϕ−1)(ϕ(A ∩ U))× Rm1−m2 . (5)

In view of ϕ(A ∩ U) ∉ Im1 , condition (H1) yields F(ϕ(A ∩ U)) ∉ Im1 , whence (5) and (H3) imply ψ(Φ(A ∩ U)) ∉ Im2 .
Therefore,Φ(A ∩ U) ∉ IM2 , since ψ is an admissible chart ofM2 defined onΦ(U). �

In a similar manner we obtain the next lemma.

Lemma 6. If Φ:M1 → M2 is a C∞-immersion between manifolds M1 ⊂ Rn1 ,M2 ⊂ Rn2 , then for every A ∈ IM1 we have
Φ(A) ∈ IM2 .

From now on, let n ≥ 2 be a fixed natural number and ⟨·|·⟩ be an arbitrary inner product in Rn inducing a norm which
we denote by ∥ · ∥. For any set Awe define A∗

= A \ {0}, where the meaning of 0 is clear from the context. Let ⊥ be the set of
all pairs of orthogonal vectors from Rn. Then ⊥

∗
= F−1(0), where F : (Rn

× Rn)∗ → R is given by F(x, y) = ⟨x|y⟩. Since 0 is
a regular value of F , it follows from [12, Theorem 9.11] that ⊥∗ forms a (2n− 1)-manifold (being also a regular submanifold
of (Rn

× Rn)∗).
Wemay thereforemake it precise what being ‘‘negligible’’ in⊥means. Namely, we say that a set Z ⊂ ⊥ has this property

iff Z ∈ I⊥
∗ and we will then write simply Z ∈ I⊥. We are now ready to formulate our main result which we shall prove in

the last section. For notational convenience, ifM is a manifold and some property, depending on a variable x, holds true for
all x ∈ M \ A with A ∈ IM , then we write that it holds IM-(a.e.).

Theorem. Let (G,+) be an Abelian group. If a function f :Rn
→ G satisfies f (x + y) = f (x) + f (y) I⊥-(a.e.), then there is a

unique orthogonally additive function g:Rn
→ G such that f (x) = g(x) In-(a.e.).
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Remark 2. According to Remark 1, the above theoremworks whenever the ideal I⊥ is defined via formula (3) for (Im)
∞

m=1
being one of the sequences of ideals described in (a)–(d).

In case (a) the ideal I⊥ consists of all first category subsets of ⊥
∗, regarded as a topological subspace of the Euclidean

space R2n.
In case (b) the ideal I⊥ consists of all Lebesgue measure zero subsets of ⊥

∗. Recall that the Lebesgue measure on any
regular submanifoldM of Rn is defined with the aid of the formula

µM(A) =


ϕ(A)

|(ϕ−1)′(x)| dx,

postulated for any admissible chart (Uϕ, ϕ) of M and any set A ⊂ M such that A ⊂ Uϕ and ϕ(A) ⊂ Rm is Lebesgue
measurable.

Further examples are produced by the ideals Im described in (c)–(d), in Remark 1. For instance, one may start with the
α-dimensional Hausdorff measure H α (for some 0 < α < 1) defined on all Borel subsets (or on all Hausdorff measurable
subsets) ofR and, by using formula (3), induce a corresponding idealI⊥. However, this ideal will not be the same as the ideal
of all Borel (Hausdorff measurable) sets A ⊂ ⊥

∗ with H α(2n−1)(A) = 0 (the α(2n − 1)-dimensional Hausdorff measure on
themetric space⊥

∗), since the productmeasureH α
⊗H α need not be theHausdorffmeasureH 2α (consult [14, Section 3.1]

and the references therein). This leads to the following question: Let 0 < α < 1. Is our Theorem true in the case where I⊥

is the set of all Borel (Hausdorff measurable) sets A ⊂ ⊥
∗ with H α(2n−1)(A) = 0 and In is replaced by the ideal of all Borel

(Hausdorff measurable) sets B ⊂ Rn with H αn(B) = 0?

Before proceeding to further lemmas, let us note some preparatory observations. For any x ∈ Rn define

Px = {y ∈ Rn
: (x, y) ∈ ⊥},

which obviously forms an (n−1)-manifold diffeomorphic to Rn−1, provided x ≠ 0. Wewill need to ‘‘smoothly’’ identify the
hyperplanes Px, for different x’s, with one ‘‘universal’’ space Rn−1. By virtue of the Hairy Sphere Theorem, it is impossible to
do for all x ∈ (Rn)∗ in the case where n is odd. Nevertheless, it is an easy task when considering only the set of vectors for
which one fixed coordinate is non-zero, e.g. the set

X := Rn−1
× R∗.

Namely, for an arbitrary x ∈ X the vectors x, e1, . . . , en−1 are linearly independent, where ei stands for the ith vector
from the canonical basis of Rn. Let B(x) = (yi(x))n−1

i=0 be an orthonormal basis of Rn with y0(x) = x/∥x∥, produced by the
Gram–Schmidt process applied to the sequence (x, e1, . . . , en−1). Define ψx:Rn

→ Rn to be the mapping which to every
z ∈ Rn assigns its coordinates with respect to B(x), i.e. ψx(z) = Y (x)−1z, where

Y (x) =


x

∥x∥
, y1(x), . . . , yn−1(x)


is the matrix formed from the column vectors. Define also Φ: X × Rn

→ X × Rn by Φ(x, z) = (x, ψx(z)). Plainly, Φ is a
C∞-mapping and its inverseΦ−1(x, y) = (x, Y (x)y) is C∞ as well. Therefore,Φ is a C∞-diffeomorphism. Moreover, by the
definition of ψx, the restriction ψx|Px maps Px onto {0} × Rn−1; hence we have

Φ−1 X × ({0} × Rn−1)


= {(x, z) ∈ ⊥
∗

: x ∈ X} =: ⊥
′ . (6)

Making use of [12, Theorem 11.20] and an easy fact that the restriction of a C∞ mapping to a submanifold of its domain is
C∞ again,1 we infer by (6) thatΦ|⊥′ yields a C∞-diffeomorphism between ⊥

′ and X × ({0} × Rn−1).
Consequently, if a function h:Rn

→ G satisfies h(x + y) = h(x)+ h(y)I⊥-(a.e.), then with the notation

Z(h) := {(x, y) ∈ ⊥
∗

: h(x + y) ≠ h(x)+ h(y)}

it follows from Lemmas 3 and 4 that
x ∈ X : {ψx(z) : (x, z) ∈ Z(h)} ∉ I{0}×Rn−1


∈ IX .

Since Px ∼ {0} × Rn−1, by the mapping ψx|Px for x ∈ X , we infer that the set

D(h) := {x ∈ X : h(x + y) = h(x)+ h(y) IPx-(a.e.)}

satisfies X \ D(h) ∈ IX . For any x ∈ Rn put

Ex(h) = {y ∈ Px : h(x + y) = h(x)+ h(y)};

then Px \ Ex(h) ∈ IPx , provided x ∈ D(h).
We end this section with a lemma, which will be useful in the ‘‘odd’’ part of the proof of our theorem. Despite it will be

applied only in the case n = 2, we present it in full generality, since the lemma seems to be interesting independently on

1 In the sequel, we will be using these two assertions without explicit mentioning.
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the problem considered. Let Sn−1 be the unit sphere of the normed space (Rn, ∥ · ∥). Since the function F :Rn
→ R given by

F(x) = ∥x∥2 is C∞ with the regular value 1 and Sn−1
= F−1(1), we infer that Sn−1 is an (n − 1)-manifold.

Lemma 7. If A ∈ ISn−1 , then there exists an orthogonal basis (x1, . . . , xn) of Rn such that xi ∈ Sn−1
\ A for each i ∈ {1, . . . , n}.

Proof. It is enough to prove the assertion in the case where ⟨·|·⟩ is the standard inner product in Rn, since between any two
inner product structures in Rn there is a linear isometry, which yields a C∞-diffeomorphism between their unit spheres.

Consider the group GL(n) of n × n real matrices with non-zero determinant. It may be identified with an open subset of
Rn2 and hence—it is an n2-manifold. It is well-known that the orthogonal group

O(n) = {A ∈ GL(n) : AAT
= In}

forms a submanifold of GL(n) and its dimension equals n(n − 1)/2 (see [11, Section 3.5.5C]). For any i ∈ {1, . . . , n} let
πi: O(n) → Sn−1 be given by πi(A) = Aei (which is nothing else but the ith column vector of A). Then πi is the restriction of
the mapping π i: GL(n) → Rn defined by the formula analogous to the previous one. Since

Dπ i(A)B = Bei for A ∈ GL(n), B ∈ Rn2 ,

the derivative Dπ i(A) is onto for any A ∈ GL(n), thus π i is a C∞-submersion. By Lemma 1, πi is a C∞-submersion as well.
Now, suppose on the contrary that each orthonormal basis of Rn has at least one entry belonging to A. In other words,

for each A ∈ O(n) there is i ∈ {1, . . . , n} with πi(A) ∈ A, i.e.

O(n) =

n
i=1

π−1
i (A).

Therefore, for a certain i ∈ {1, . . . , n}wewould haveπ−1
i (A) ∉ IO(n). However, A = πi(π

−1
i (A)) ∈ ISn−1 , which contradicts

the assertion of Lemma 5, as πi is a C∞-submersion. �

3. Proof of the theorem

For the uniqueness part of our Theorem suppose that there are two orthogonally additive functions g1 and g2 equal to
fIn-(a.e.). By the general form (2) of orthogonally additivemappings,we see that both g1 and g2 satisfy the Fréchet functional
equation∆3

yg(x) = 0; thus arguing as in the proof of the uniqueness part of [15, Theorem 1], or making use of [10, Lemma
17.7.1], we get g1 = g2.

The proof of existence relies on some ideas from [2,1]. Assume G and f are as in the theorem.We start with the following
trivial observation.

Lemma 8. The functions f1, f2:Rn
→ G given by

f1(x) = f (x)− f (−x) and f2(x) = f (x)+ f (−x)

satisfy

f1(x + y) = f1(x)+ f1(y) and f2(x + y) = f2(x)+ f2(y) I⊥-(a.e.).

In the sequel we will be using hypothesis (H0)–(H3) and Lemmas 2–4 without explicit mentioning.
For k,m ∈ N with 2 ≤ k ≤ m we define O(k,m) as the set of all k-tuples of mutually orthogonal (with respect to the

usual scalar product) vectors from Rm with at most one of them being zero. Put

Rk,m = {(x(1), . . . , x(k)) ∈ (Rm)k : x(i) = 0 for at most one i = 1, . . . , k}.

Then O(k.m) = F−1(0), where F :Rk,m → R
k(k−1)

2 is given by

F(x(1), . . . , x(k)) = (⟨x(1)|x(2)⟩, ⟨x(1)|x(3)⟩, . . . , ⟨x(1)|x(k)⟩,
⟨x(2)|x(3)⟩, . . . , ⟨x(2)|x(k)⟩,
...

⟨x(k−1)
|x(k)⟩).

Since 0 is a regular value of F , [12, Theorem9.11] implies that O(k,m) is a submanifold ofRkm with dimension km−
1
2k(k−1).

In particular, O(2, n) = ⊥
∗.

Lemma 9. Let k ∈ N, k ≥ 2 and let A ⊂ O(2, k) be a set such that

{(x(1), . . . , x(k)) ∈ O(k, k) : (x(1), x(2)) ∈ A} ∈ IO(k,k).

Then A ∈ IO(2,k).
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Proof. Denote the above subset of O(k, k) by B. Wemay clearly assume that for each (x(1), x(2)) ∈ Awe have x(1) ≠ 0 ≠ x(2).
For i, j ∈ {1, . . . , k} define

Dij =


(x(1), x(2)) ∈ O(2, k) : det


x(1)i x(1)j

x(2)i x(2)j


≠ 0


,

Bij = {(x(1), . . . , x(k)) ∈ B : (x(1), x(2)) ∈ Dij}.

We will show that

A =

k
i,j=1
i≠j

(A ∩ Dij) and B =

k
i,j=1
i≠j

Bij. (7)

For the former equality suppose that for some (x(1), x(2)) ∈ A and each pair of indices 1 ≤ i, j ≤ k, i ≠ j, we have

det


x(1)i x(1)j

x(2)i x(2)j


= 0. (8)

Then for each 1 ≤ i ≤ k we have x(1)i = 0 if and only if x(2)i = 0. Indeed, choosing any 1 ≤ j ≤ k such that x(1)j ≠ 0 we see
from (8) that x(1)i = 0 implies x(2)i = 0; the reverse implication holds by symmetry. Now, let 1 ≤ i1 < · · · < iℓ ≤ k be the
indices of all non-zero coordinates of x(1) (and x(2)). For each pair of 1 ≤ i, j ≤ k one of the rows of the determinant in (8)
is a multiple of the other. Applying this observation consecutively for the pairs (i1, i2), (i2, i3), . . . , (iℓ−1, iℓ) we infer that
x(1) and x(2) are parallel. Since they are also orthogonal, one of them should be zero which is the case we have excluded. The
former equality in (7) is thus proved, and its easy consequence is the latter one.

We are now to show that A ∩ Dij ∈ IO(2,k) for each pair of indices i, j ∈ {1, . . . , k} with i ≠ j. So, fix any such pair and
assume that i < j. Then for every (x(1), x(2)) ∈ Dij the vectors:

x(1), x(2), e1, . . . , ei−1, ei+1, . . . , ej−1, ej+1, . . . , ek

form a basis of Rk. Let

B(x(1), x(2)) =

yi(x(1), x(2))

k
i=1

be an orthonormal basis produced by the Gram–Schmidt process applied to that sequence of vectors. Since x(1) and x(2) are
orthogonal, we have

y1(x(1), x(2)) =
x(1)

∥x(1)∥
and y2(x(1), x(2)) =

x(2)

∥x(2)∥
.

For (x(1), x(2)) ∈ Dij define ϑx(1),x(2) :Rk
→ Rk as the mapping which to every z ∈ Rk assigns its coordinates with respect to

B(x(1), x(2)), i.e.

ϑx(1),x(2)(z) = Y (x(1), x(2))−1z,

where

Y (x(1), x(2)) =


x(1)

∥x(1)∥
,

x(2)

∥x(2)∥
, y3(x(1), x(2)), . . . , yk(x(1), x(2))


is formed from the columnvectors. Obviously, every z belonging to the orthogonal complementV (x(1), x(2))⊥ of the subspace
spanned by x(1) and x(2) is mapped onto a certain vector of the form (0, 0, t3, . . . , tk)whichmay be naturally identified with
an element of Rk−2. Hence, we get a linear isomorphism γx(1),x(2) : V (x

(1), x(2))⊥ → Rk−2 and we may define a mapping

Γ : {(x(1), . . . , x(k)) ∈ O(k, k) : (x(1), x(2)) ∈ Dij} →

O(2, k) ∩ Dij


× O(k − 2, k − 2)

by the formula

Γ (x(1), . . . , x(k)) =

(x(1), x(2)), (γx(1),x(2)(x

(3)), . . . , γx(1),x(2)(x
(k)))


.

The definition is well-posed, since ϑx(1),x(2) , and hence also γx(1),x(2) , is an isometry for each (x(1), x(2)) ∈ Dij. Moreover, it is
easily seen that Γ is a C∞-diffeomorphism (the formulas of the Gram–Schmidt procedure are C∞).

It easily follows from B ∈ IO(k,k) that Bij belongs to the corresponding ideal of subsets of

{(x(1), . . . , x(k)) ∈ O(k, k) : (x(1), x(2)) ∈ Dij};
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thus Γ (Bij) belongs to the ideal corresponding to (O(2, k) ∩ Dij)× O(k − 2, k − 2). Finally, observe that

Γ (Bij) = (A ∩ Dij)× O(k − 2, k − 2),

which yields A ∩ Dij ∈ IO(2,k)∩Dij and hence also A ∩ Dij ∈ IO(2,k). �

Lemma 10. If an odd function h:Rn
→ G satisfies h(x+y) = h(x)+h(y)I⊥-(a.e.), then there is an additive function b:Rn

→ G
such that h(x) = b(x) In-(a.e.).

Proof. Due to some isometry formalities, we may suppose ⟨·|·⟩ to be the standard inner product in Rn.
Define

W = {x = (x1, . . . , xn) ∈ Rn
: xi = 0 for some i}

and

Sn−1
+

= {x = (x1, . . . , xn) ∈ Sn−1
: xn > 0}.

Since Sn−1
+ is an open subset of Sn−1, it is an (n − 1)-manifold. For any x ∈ Sn−1

+ let

Tx = {(λ, y) ∈ R∗
× P∗

x : λ2 = ∥y∥2
}.

Define a mapΦx:R∗
× P∗

x → Rn
× Rn by

Φx(λ, y) =


λx + y,

∥y∥2

λ
x − y


, (9)

and setΦx = Φx|(R∗×P∗
x )\Tx . Let also Q (x) = Φx


(R∗

×P∗
x )\Tx


⊂ ⊥

∗. We are going to show that for every x ∈ P := Sn−1
+ \W

the set Q (x) forms a submanifold of ⊥∗.
At the moment, let x ∈ Sn−1

+ . For brevity, denote µ = µ(λ, y) = ∥y∥2/λ. It is easily seen that for each (t, u) =

(λx + y, µx − y) ∈ Q (x) all four vectors: t, u, x, y belong to the subspace V (t, x) of Rn spanned by t and x. Choose an
arbitrary non-zero vector z(t, x) ∈ V (t, x), orthogonal to x. Then z(t, x) is collinear with y; hence the equality t = λx + y
represents t in terms of the basis (x, z(t, x)) of V (t, x). Therefore, λ and y are uniquely determined by t , which proves that
Φx is injective.

In order to show that Φ−1
x is continuous fix an arbitrary (t, u) ∈ Q (x). Now, put z(t, x) = ⟨t|x⟩x − t; then (x, z(t, x)) is

an orthogonal basis of V (t, x). Since t = λx + y for certain λ ∈ R∗ and y ∈ P∗
x , we have t = λx + αz(t, x) for some α ∈ R,

whence we find that λ = ⟨t|x⟩ and y = t − ⟨t|x⟩x. We have thus shown thatΦx is a homeomorphism.
Now, fix x ∈ P . We shall prove thatΦx is a C∞-immersion. To this end put

Vx =


(λ, y) ∈ R∗

× (Rn)∗ : λ = ⟨x|y⟩ ±


⟨x|y⟩2 + ∥y∥2


and define amapping Φ̂x: (R∗

× (Rn)∗)\Vx → Rn
×Rn by the formula analogous to (9). Then (R∗

×P∗
x )\Tx is a submanifold

of (R∗
× (Rn)∗) \ Vx. Let (λ, y) ∈ (R∗

× (Rn)∗) \ Vx. If we show that the derivative DΦ̂x(λ, y) is injective, then, in view of
Lemma 1, we will be done. Since

DΦ̂x(λ, y) =



x1
x2
...
xn

1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

∂(µx − y)
∂λ

∂(µx − y)
∂y


,

we immediately get that rank DΦ̂x(λ, y) ≥ n, where the equality occurs only if the first column vector is a linear combination
of the remaining n column vectors with coefficients x1, . . . , xn. However, this would imply that for each i ∈ {1, . . . , n} we
have

∂(µxi − yi)
∂λ

=

n
j=1

xj
∂(µxi − yi)

∂yj
,

i.e.

λ2 − 2⟨x|y⟩λ− ∥y∥2
= 0,

which is not the case, since (λ, y) ∉ Vx. As a result, we obtain rank DΦ̂x(λ, y) = n + 1; thus DΦ̂x(λ, y) is injective.
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We have shown that Φx is an embedding (i.e. homeomorphic C∞-immersion) of (R∗
× P∗

x ) \ Tx into ⊥
∗. By virtue of

[12, Theorem 11.17], its image Q (x) is a submanifold of ⊥∗.
Observe that the manifolds Q (x), for x ∈ P , are C∞-diffeomorphic to each other. Indeed, by the remarks following the

statement of our Theorem, for each x ∈ X the function Ψx:R∗
× P∗

x → R∗
× (Rn−1)∗ defined by the formula

Ψx(λ, y) = (λ,ψx(y)), (10)

where ψx(y) = Y (x)−1y is defined as earlier and the tilde operator deletes the first coordinate (which equals 0 for y ∈ Px),
is a C∞-diffeomorphism. Moreover, Ψx maps (R∗

× P∗
x ) \ Tx onto the set

U := {(λ, y) ∈ R∗
× (Rn−1)∗ : λ2 ≠ ∥y∥2

},

which follows from the fact thatψx is an isometry. Therefore, for each x, y ∈ P , themappingΦy◦Ψ
−1
y ◦Ψx◦Φ

−1
x yields aC∞-

diffeomorphism between Q (x) and Q (y). So, we pick any x0 ∈ P and we regard the set Q := Q (x0) as a ‘‘model’’ manifold
for all Q (x)’s.

Define

⊥
(1)

= {(t, u) ∈ ⊥
∗

: tn + un ≠ 0, t ≠ 0, u ≠ 0 and ∥t∥ ≠ ∥u∥}

(which is an open subset, and hence it is a submanifold, of ⊥∗) and observe that

⊥
(1)

=


x∈Sn−1

+

Q (x). (11)

In fact, for any (t, u) ∈ ⊥
(1) put

x = sgn(tn + un)
t + u

∥t + u∥
. (12)

Then x ∈ Sn−1
+ and (t, u) ∈ Q (x). Indeed, if we choose any y0 ∈ P∗

x ∩ V (t, u) with ∥y0∥ = 1 (which is unique up to a sign),
then t and u are represented in terms of the basis (x, y0) of V (t, u) as follows:

t = ⟨t|x⟩x + ⟨t|y0⟩y0 and u = ⟨u|x⟩x + ⟨u|y0⟩y0,

and we have

⟨t|y0⟩ = ⟨t + u|y0⟩ − ⟨u|y0⟩ = ±∥t + u∥⟨x|y0⟩ − ⟨u|y0⟩ = −⟨u|y0⟩.

Hence, after substitution λ = ⟨t|x⟩ and y = ⟨t|y0⟩y0, we obtain t = λx + y and u = ⟨u|x⟩x − y. The coefficient ⟨u|x⟩ equals
∥y∥2/λ, since ⟨t|u⟩ = ⟨x|y⟩ = 0. Moreover, λ ≠ 0, y0 ≠ 0, and it follows from ∥t∥ ≠ ∥u∥ that λ2 ≠ ⟨u|x⟩2 = ∥y∥4/λ2,
which gives λ2 ≠ ∥y∥2. Consequently, (t, u) ∈ Q (x) and thus we have proved the inclusion ‘‘⊆’’. The reverse inclusion is a
straightforward calculation.

We shall now prove that the mappingΛ: Sn−1
+ × U → ⊥

(1) defined by

Λ(x, λ, y) = Φx ◦ Ψ−1
x (λ, y)

is a C∞-diffeomorphism.
First, in view of (11), it is easily seen that the image ofΛ is ⊥

(1). According to the definition,Λ is C∞. Moreover, for each
(t, u) = Φx


λ,ψ−1

x (y)


∈ Q (x)we have
λ+

∥ψ−1
x (y)∥2

λ


x = t + u, (13)

which, jointly with the fact that x ∈ Sn−1
+ , uniquely determines x. By the injectivity of Φx, we infer that λ and y are then

uniquely determined by t and u as well. Therefore,Λ is injective.
In order to get a formula for Λ−1, observe that for each (t, u) = Φx


λ,ψ−1

x (y)


∈ ⊥
(1) equality (13) yields (12). This

means that x is expressed as a function of t and u, which is C∞ on both components of the set ⊥
(1). By the formula forΦ−1

x ,
we get

λ = sgn(tn + un)
⟨t|t + u⟩
∥t + u∥

and y = ψx


t −

⟨t|t + u⟩
∥t + u∥2

(t + u)

,

and since the value of ψx at a given point is a C∞ function of x, we infer that Λ−1 is C∞. Consequently, Λ is a C∞-
diffeomorphism.

Let χ :⊥(1)
→ Sn−1

+ × Q be given by

χ = (idSn−1
+

× Φx0) ◦ (idSn−1
+

× Ψ−1
x0 ) ◦Λ−1

;
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then χ is a C∞-diffeomorphism. Since Z(h) ∈ I⊥ and ⊥
(1) is an open subset of ⊥∗, we have Z(h)∩ ⊥

(1)
∈ I

⊥
(1) . Therefore,

{x ∈ Sn−1
+

: χ(Z(h) ∩ ⊥
(1))[x] ∉ IQ } ∈ ISn−1

+

. (14)

Let x ∈ Sn−1
+ . For any q ∈ Q we have

q ∈ χ(Z(h) ∩ ⊥
(1))[x] ⇐⇒ (x, q) ∈ χ(Z(h) ∩ ⊥

(1)) ⇐⇒ χ−1(x, q) ∈ Z(h) ∩ ⊥
(1) .

Plainly,

χ−1
= Λ ◦ (idSn−1

+

× Ψx0) ◦ (idSn−1
+

× Φx0)
−1,

so the last condition is equivalent toΛ(x, (Ψx0 ◦ Φ
−1
x0 )(q)) ∈ Z(h). We have thus shown that

χ(Z(h) ∩ ⊥
(1))[x] = {q ∈ Q : Λ(x, (Ψx0 ◦ Φ

−1
x0 )(q)) ∈ Z(h)}.

Since the map Ψx0 ◦ Φ
−1
x0 :Q → U is a diffeomorphism, axiom (H1) and Lemma 3 imply that:

χ(Z(h) ∩ ⊥
(1))[x] ∉ IQ ⇐⇒ {(λ, y) ∈ U : Λ(x, λ, y) ∈ Z(h)} ∉ In

⇐⇒ {(λ, y) ∈ U : Φx(λ,ψ−1
x (y)) ∈ Z(h)} ∉ In

⇐⇒ {(λ, y) ∈ R∗
× (Rn−1)∗ : Φx(λ,ψ−1

x (y)) ∈ Z(h)} ∉ In

⇐⇒ {(λ, y) ∈ R∗
× P∗

x : Φx(λ, y) ∈ Z(h)} ∉ IR∗×P∗
x

⇐⇒ {(λ, y) ∈ (R∗
× P∗

x ) \ Tx : Φx(λ, y) ∈ Z(h)} ∉ I(R∗×P∗
x )\Tx

⇐⇒ Z(h) ∩ Q (x) ∉ IQ (x).

Thus (14) gives

{x ∈ P : Z(h) ∩ Q (x) ∉ IQ (x)} ∈ ISn−1
+

.

Since Sn−1
+ \ P ∈ ISn−1

+

, we have also

Z(h) ∩ Q (x) ∈ IQ (x) ISn−1
+

-(a.e.). (15)

For any x ∈ Sn−1
+ define Γx:R∗

× P∗
x → ⊥

∗ andΘx:R∗
× P∗

x → ⊥
∗ as

Γx(λ, y) =


∥y∥2

λ
x,−y


and Θx(λ, y) = (λx, y),

and put R(x) = Γx(R∗
× P∗

x ), S(x) = Θx(R∗
× P∗

x ). An argument similar to the one above shows that R(x), for x ∈ Sn−1
+ , are

submanifolds of ⊥∗,C∞-diffeomorphic to each other, and the same is true for S(x)’s. Moreover, the set

⊥
(2)

:= {(t, u) ∈ ⊥
∗

: tn ≠ 0 and u ≠ 0} =


x∈Sn−1

+

R(x) =


x∈Sn−1

+

S(x)

isC∞-diffeomorphic to Sn−1
+ ×R and Sn−1

+ ×S, whereR and S are ‘‘model’’manifolds for allR(x)’s and for all S(x)’s, respectively.
Arguing further, analogously as above, we also infer that

Z(h) ∩ R(x) ∈ IR(x) and Z(h) ∩ S(x) ∈ IS(x) ISn−1
+

-(a.e.). (16)

According to (15) and (16) there is a set S0 ∈ ISn−1
+

withZ(h) ∩ Q (x) ∈ IQ (x),
Z(h) ∩ R(x) ∈ IR(x),
Z(h) ∩ S(x) ∈ IS(x)

(17)

for x ∈ Sn−1
+ \ S0.

At the moment, assume that n = 2. Applying Lemma 7 to the set

A := S0 ∪ (−S0) ∪ {(−1, 0), (1, 0)} ∈ IS1 ,

and changing signs of vectors of the obtained basis as required, we get an orthogonal basis (x(1), x(2)) of R2 whose each
element x satisfies conditions (17).
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Now, we shall prove that for each i ∈ {1, 2} the function hi:R → G given by hi(λ) = h(λx(i)) satisfies

hi(λ+ µ) = hi(λ)+ hi(µ) Ω(I(0,∞))-(a.e.), (18)

where Ω(I(0,∞)) = {A ⊂ (0,∞)2 : A[x] ∈ I(0,∞)I(0,∞)-(a.e.)} is the so called conjugate ideal. Plainly, condition (18)
would imply that the same is true with (0,∞) replaced by (−∞, 0), due to the oddness of the function h.

Fix i ∈ {1, 2}. In view of (17), with x replaced by x(i), there is a set Ci ∈ IR∗×P∗

x(i)
such that


λx(i) + y,

∥y∥2

λ
x(i) − y


∈ ⊥

∗
\Z(h),

∥y∥2

λ
x(i),−y


∈ ⊥

∗
\Z(h),

λx(i), y


∈ ⊥
∗
\Z(h)

(19)

for (λ, y) ∈ (R∗
× P∗

x(i)
) \ Ci (note that Tx(i) ∈ IR∗×P∗

x(i)
, so we may include the set Tx(i) into Ci and we see that the difference

between the domain of Φx(i) and the domains of Γx(i) ,Θx(i) causes no trouble at all). Therefore, for all λ ∈ R except a set
Λi ∈ I1 the conjunction (19) holds true for all y ∈ Px(i) \ Yi(λ)with Yi(λ) ∈ IPx(i)

. Let

Bi(λ) =


∥y∥2

λ
: y ∈ Px(i) \ Yi(λ)


.

Then, obviously, R \ Bi(λ) ∈ I(0,∞) for each positive λ ∉ Λi, whereas R \ Bi(λ) ∈ I(−∞,0) for each negative λ ∉ Λi. For
every pair (λ, µ)with λ ∉ Λi and µ ∈ Bi(λ), µ =

∥y∥2

λ
, we have

hi(λ+ µ) = h


λx(i) + y +

∥y∥2

λ
x(i) − y


= h(λx(i) + y)+ h


∥y∥2

λ
x(i) − y



= h(λx(i))+ h(y)+ h


∥y∥2

λ
x(i)


+ h(−y) = hi(λ)+ hi(µ),

which proves (18). Applying the theoremof de Bruijn [4] separately to the functions hi|(0,∞) and hi|(−∞,0)weget two additive
mappings b′

i: (0,∞) → G and b′′

i : (−∞, 0) → G which coincide with these two restrictions of hi almost everywhere in
(0,∞) and (−∞, 0), respectively. However, since h is odd, the extensions of both b′

i and b′′

i to the whole real line have to
be the same. As a result, there is an additive function bi:R → G such that hi(λ) = bi(λ) for λ ∈ R \ Zi with a certain Zi ∈ I1.

Define a function b:R2
→ G by b(x) = b1(λ1) + b2(λ2), where λi is the ith coordinate of x with respect to the basis

(x(1), x(2)). Plainly, b is an additive function. It remains to show that h(x) = b(x)I2-(a.e.).
Recall that for every x ∈ X = R × R∗ the mappingΨx defined by (10) yields a C∞-diffeomorphism between R∗

× P∗
x and

R∗
× R∗. In particular, we have C := Ψx(1)(C1) ∈ I2 and

λx(1),ψ−1
x(1)
(y)


∈ ⊥
∗
\Z(h) for (λ, y) ∈ R2

\ C . (20)

Define∆:R2
→ R2 by

∆(λ1, λ2) =

λ1,ψx(1)(λ2x

(2))

.

Plainly,∆ is a C∞-diffeomorphism, so∆−1(C) ∈ I2. Therefore,

∆−1(C) ∪ (Z1 × R) ∪ (R × Z2) ∈ I2

and for each pair (λ1, λ2) ∈ R2 outside this set condition (20) implies (λ1x(1), λ2x(2)) ∈ ⊥
∗
\Z(h); thus

h(λ1x(1) + λ2x(2)) = h(λ1x(1))+ h(λ1x(1)) = h1(λ1)+ h2(λ2)

= b1(λ1)+ b2(λ2) = b(λ1x(1) + λ2x(2)).

By the isomorphism, which to every x ∈ R2 assigns its coordinates in the basis (x(1), x(2)), we have h(x) = b(x)I2-(a.e.) and
our assertion for n = 2 follows.

In the sequel, assume that n ≥ 3 and the assertion holds true for n − 1 in the place of n.
Define O(n − 1, n)′ to be the set of all (n − 1)-tuples from O(n − 1, n) generating a subspace of Rn whose orthogonal

complement is spanned by a vector (x1, . . . , xn)with xn ≠ 0. In other words,

O(n − 1, n)′ =


(x(1), . . . , x(n−1)) ∈ O(n − 1, n) : ±

x(1) ∧ · · · ∧ x(n−1)

∥x(1) ∧ · · · ∧ x(n−1)∥
∈ Sn−1

+


,
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where ∧ stands for the wedge product in Rn. This set, being an open subset of O(n − 1, n), is its submanifold having the
same dimension. Consider the mappingΩ: Sn−1

+ × O(n − 1, n − 1) → O(n − 1, n)′ defined by

Ω(x, x(1), . . . , x(n−1)) =
ψ−1

x (x(1)), . . . ,ψ−1
x (x(n−1))


.

The values of Ω indeed belong to O(n − 1, n)′, since for each x ∈ X the function ψx is an isometry, being a linear map
determined by the orthogonal matrix Y (x)−1. Furthermore,Ω is bijective with the inverseΩ−1 given by

Ω−1(y(1), . . . , y(n−1)) =

x,ψx(y(1)), . . . ,ψx(y(n−1))


,

where

x = ±
y(1) ∧ · · · ∧ y(n−1)

∥y(1) ∧ · · · ∧ y(n−1)∥

and the sign depends on which of the two components of O(n − 1, n)′ contains (y(1), . . . , y(n−1)). By the above formulas,Ω
is a C∞-diffeomorphism.

Put

Z = {(y(1), . . . , y(n−1)) ∈ O(n − 1, n)′ : (y(1), y(2)) ∈ Z(h)}.

Then Lemma 5 implies Z ∈ IO(n−1,n)′ , since Z(h) ∈ I⊥ (i.e. Z(h) ∈ IO(2,n)) is the image of Z through the C∞-submersion
(y(1), . . . , y(n−1)) → (y(1), y(2)). Therefore, we have Ω−1(Z) ∈ ISn−1

+
×O(n−1,n−1); hence Ω

−1(Z)[x] ∈ IO(n−1,n−1) is valid
ISn−1

+

-(a.e.), which translates into the fact that the set

A(x) :=

(x(1), . . . , x(n−1)) ∈ O(n − 1, n − 1) :

ψ−1
x (x(1)),ψ−1

x (x(1))


∈ Z(h)


belongs to IO(n−1,n−1) for every x ∈ Sn−1
+ except a set from ISn−1

+

. By virtue of Lemma 9, for each such xwe must have
(x(1), x(2)) ∈ O(2, n − 1) :

ψ−1
x (x(1)),ψ−1

x (x(2))


∈ Z(h)


∈ IO(2,n−1). (21)

Hence, putting ⊥x = {(t, u) ∈ Px × Px : (t, u) ∈ ⊥} we infer that the condition

h(t + u) = h(t)+ h(u) I⊥
∗
x -(a.e.) (22)

is valid ISn−1
+

-(a.e.). Consequently, wemay pick a particular x ∈ Sn−1
+ satisfying both (17) and (22). By virtue of our inductive

hypothesis and some isometry formalities (identifying Px with Rn−1), condition (22) yields the existence of an additive
function bx: Px → G such that h(t) = bx(t) for t ∈ Px \ Y with a certain Y ∈ IPx . Moreover, by an earlier argument,
there is also an additive function b1:R → G such that h(λx) = b1(λ) for λ ∈ R \ Z1 with a certain Z1 ∈ I1. Finally, there is
a set C1 ∈ IR×Px with (λx, y) ∈ ⊥

∗
\Z(h)whenever (λ, y) ∈ (R × Px) \ C1.

Define a function b:Rn
→ G by the formula b(λx + y) = b1(λ) + bx(y) for λ ∈ R and y ∈ Px. Then b is additive and for

each pair (λ, y) ∈ R × Px outside the set

C1 ∪ (Z1 × Px) ∪ (R × Y ) ∈ IR×Px

we have

h(λx + y) = h(λx)+ h(y) = b1(λ)+ bx(y) = b(λx + y),

which completes the proof. �

Lemma 11. If a function h:Rn
→ G satisfies h(x) = h(−x)In-(a.e.) and h(x + y) = h(x) + h(y) I⊥-(a.e.), then there is an

additive function a:R → G such that h(x) = a

∥x∥2


In-(a.e.).

Proof. For any r ≥ 0 let Sn−1(r) = {x ∈ Rn
: ∥x∥ = r}. By the natural identification, we have (Rn)∗ ∼ (0,∞) × Sn−1.

Therefore, for every A ∈ In there is a set R(A) ∈ I(0,∞) such that A∩Sn−1(r) ∈ ISn−1(r) for r ∈ (0,∞)\R(A). In the first part
of the proof we will show the following claim: there exists a set A ∈ In such that for each r ∈ (0,∞) \ R(A) the function h
is constant ISn−1(r)-(a.e.) on Sn−1(r), more precisely—that h|Sn−1(r) is constant outside the set A ∩ Sn−1(r).

We start with the following observation: there is T ∈ I⊥ such that h(t + u) = h(u − t) whenever (t, u) ∈ ⊥
∗
\T . Let

E = {x ∈ Rn
: h(x) = h(−x)} and H = (−D(h)) ∩ D(h) ∩ E; then Rn

\ H ∈ In. Define

T = {(t, u) ∈ ⊥
∗

: t ∉ H} ∪ {(t, u) ∈ ⊥
∗

: t ∈ H and u ∉ Et(h) ∩ E−t(h)}. (23)

Then for every (t, u) ∈ ⊥
∗
\T we have h(t + u) = h(t) + h(u) and h(u − t) = h(u) + h(−t). Moreover, we have

also h(t) = h(−t); hence h(t + u) = h(u − t), as desired. In order to show that T ∈ I⊥ note that it is equivalent to
T ∩ ⊥

′
∈ I⊥

′ , where ⊥
′ may be identified with X × Rn−1. The first summand in (23), after intersecting with ⊥

′, is then
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identified with (X \H)×Rn−1
∈ I2n−1, whereas for each pair (t, u) from the second summandwe have either (t, u) ∈ Z(h),

or (−t, u) ∈ Z(h), which shows that it belongs to I⊥. Consequently, T ∈ I⊥.
Define Φ:⊥∗

→ Rn
× Rn by putting Φ(t, u) = (t + u, u − t). It is evident that Φ is a C∞-immersion and yields a

homeomorphism between ⊥
∗ and

M := Φ(⊥
∗) =


r∈(0,∞)

(Sn−1(r)× Sn−1(r)).

Therefore, [12, Theorem 11.17] implies that M is a manifold. Moreover, Φ:⊥∗
→ M is a C∞-diffeomorphism; thus

Φ(T ) ∈ IM . Since the mapping (x, y) → (x, y/∥x∥) yields M ∼ (Rn)∗ × Sn−1, there exists a set A ∈ In such that for
every x ∈ Rn

\ Awe have

(x, y) ∉ Φ(T ) ISn−1(∥x∥)-(a.e.).

By the property of the set T , (x, y) ∉ Φ(T ) implies h(x) = h(y). Now, for any r ∈ (0,∞)\R(A) and for arbitrary x, y ∈ Rn
\A

with ∥x∥ = ∥y∥ = r , we have

(x, z), (y, z) ∉ Φ(T ) ISn−1(r)-(a.e.);

hence h(x) = h(z) = h(y), which completes the proof of our claim.
There is a function g:Rn

→ Gwhich is constant on every sphere Sn−1(r) such that h(x) = g(x) for x ∈ Rn
\ A. Therefore,

there is also a function ϕ: [0,∞) → G satisfying g(x) = ϕ

∥x∥2


for every x ∈ Rn. We are going to show that

ϕ(λ+ µ) = ϕ(λ)+ ϕ(µ) Ω(I(0,∞))-(a.e.). (24)

Put

B = {(x, y) ∈ ⊥
∗

: either x ∈ A, or y ∈ A, or x + y ∈ A}

and observe that B ∈ I⊥, whence also Z := Z(h) ∪ B ∈ I⊥. Let

D = {x ∈ (Rn)∗ : (x, y) ∉ Z IPx-(a.e.)}.

By an argument similar to the one applied to D(h), we infer that X \ D ∈ IX ; hence Rn
\ D ∈ In. For each x ∈ Rn put

Ex = {y ∈ Px : (x, y) ∉ Z}; then Px \ Ex ∈ IPx provided x ∈ D. Let also D′
= {∥x∥2

: x ∈ D}; then (0,∞) \ D′
∈ I(0,∞).

Fix arbitrarilyλ ∈ D′ and choose any x ∈ D satisfying
√
λ = ∥x∥. Put E(λ) = {∥y∥2

: y ∈ Ex} (then (0,∞)\E(λ) ∈ I(0,∞))
and pick anyµ ∈ E(λ). Then

√
µ = ∥y∥ for some y ∈ Ex, which implies (x, y) ∉ Z . Applying the facts that x+y ∉ A, (x, y) ∉

Z(h), x ∉ A and y ∉ A, consecutively, we obtain

ϕ(λ+ µ) = g(x + y) = h(x + y)
= h(x)+ h(y) = g(x)+ g(y) = ϕ(λ)+ ϕ(µ),

which proves (24).
By the theorem of de Bruijn, there is an additive function a:R → G such that ϕ(λ) = a(λ) for λ ∈ [0,∞) \ Y with

Y ∈ I[0,∞). Then the equality h(x) = a

∥x∥2


holds true for x ∈ Rn

\ (A ∪ C), where C = {x ∈ Rn
: ∥x∥2

∈ Y } ∈ In. Thus,
the proof has been completed. �

To finish the proof of our theorem we shall combine Lemmas 8, 10 and 11 to get additive functions a:R → G and
b:Rn

→ G such that

2

f (x)− a(∥x∥2)− b(x)


= 0 In-(a.e.).

The only thing left to be proved is the following fact in the spirit of [2, Lemma 2].

Lemma 12. If a function h:Rn
→ G satisfies 2h(x) = 0 In-(a.e.) and h(x+y) = h(x)+h(y)I⊥-(a.e.), then h(x) = 0 In-(a.e.).

Proof. For every x ∈ Rn put g(x) = h(x)− h(−x). Applying Lemmas 8 and 10 we get an additive function b:Rn
→ G such

that g(x) = b(x)In-(a.e.). Therefore

g(x) = 2b
 x
2


= 2h

 x
2


− 2h


−

x
2


= 0 In-(a.e.),

i.e. h(x) = h(−x)In-(a.e.). Now, by virtue of Lemma 11, there is an additive function a:R → G satisfying h(x) = a(∥x∥2)In-
(a.e.). Consequently,

h(x) = a


2
 1
√
2
x
2


= 2a

 1
√
2
x
2


= 2h


1
√
2
x


= 0 In-(a.e.). �
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