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1. Introduction

Let (E, (:|-)) be a real inner product space, dimE > 2, and let (G, +) be an Abelian group. A function f: E — G is called
orthogonally additive iff it satisfies the equation

fx+y) =fx) +f©) (1)

forall (x,y) € L := {(x,y) € E? : (x]y) = 0}. It was proved independently by R. Ger, Gy. Szabé and ]. Ritz [1, Corollary 10]
that such a function has the form

F) = a(llxl?) +bx) (2)

with some additive mappings a: R — G, b: E — G provided that G is uniquely 2-divisible. This divisibility assumption was
dropped by K. Baron and J. Rtz [2, Theorem 1].

We are going to deal with the situation where equality (1) holds true for all orthogonal pairs (x, y) outside from a
“negligible” subset of L. Considerations of this type go back to a problem [3], posed by P. Erdés, concerning the unconditional
version of Cauchy’s functional equation (1). It was solved by N. G. de Bruijn [4] and, independently, by W. B. Jurkat [5], and also
generalized by R. Ger [6]. Similar research concerning mappings which preserve inner product was made by J. Chmieliriski
and J. Rdtz [7] and by J. Chmieliriski and R. Ger [8].

While studying unconditional functional equations, “negligible” sets are usually understood as the members of some
proper linearly invariant ideal. Moreover, any such ideal of subsets of an underlying space X automatically generates another
such ideal of subsets of X2 via the Fubini theorem (see R. Ger [9] and M. Kuczma [ 10, Section 17.5]). However, we shall assume
that equation (1) is valid for (x, y) € L \ Z, where Z is “negligible” in L (not only in E?), and therefore the structure of L
should be appropriate to work with “linear invariance” and Fubini-type theorems. This is the reason why we restrict our
attention to Euclidean spaces R" and regard L as a smooth (2n — 1)-dimensional manifold lying in R".

* This research has been supported by the scholarship from the UPGOW project co-financed by the European Social Fund.
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2. Preliminary results

For completeness let us recall some definitions concerning the manifold theory (for further information see, e.g., R.
Abraham, J. E. Marsden and T. Ratiu [11], and L. W. Tu [12]). Let S be a topological space; by an m-dimensional C*°-atlas we
mean a family 4 = {(U;, ¢;)}ic; such that {U;}¢; is an open covering of S, for each i € I the mapping ¢; is a homeomorphism
which maps U; onto an open subset of R™, and for each i, j € I the mapping ¢; o gpj_l is a €*°-diffeomorphism defined on
@;(U; N U;). Brouwer’s theorem of dimension invariance implies that each two atlases on S are of the same dimension.

We say that atlases +; and - are equivalent iff A1 U+ is an atlas. A C*°-differentiable structure £ on S is an equivalence
class of atlases on S; the union | £ forms a maximal atlas on S and any of its elements is called an admissible chart. By a
C*°-differentiable manifold (briefly: manifold) M we mean a pair (S, £) of a topological space S and a C*°-differentiable
structure O on S; we shall then identify M with the space S for convenience. A manifold is called an m-manifold iff its every
atlas is m-dimensional.

Having an m;-manifold M; = (51, £;) and an my-manifold M, = (S,, £D,) we may define the product manifold M, x
M; = (§1 X Sy, D1 X D,), where the differentiable structure £; x D, is generated by the atlas

{(U1 x Uz, 1 x ¢3) : (Ui, ) € | D fori = 1,2} .

Then M; x M, forms an (m; 4+ my)-manifold. For an arbitrary set A C M; x M, and any point x € M; we use the notation
Alx] ={ye My : (x,y) € A}.

In what follows, we consider only manifolds M C R", for some n € N, equipped with the natural topology and a
differentiable structure which is determined by the following condition: for every x € M there is a €*°-diffeomorphism
¢ defined on an open set U C R" with x € U such that p(M NU) = ¢(U) N (R™ x {0}), where m is the dimension of M. In
particular, every open subset of R" yields an n-manifold with the atlas consisting of a single identity map. Any set M C R"
satisfying the above condition forms a submanifold of R" in the sense of [11, Definition 3.2.1], or a regular submanifold of
R" in the sense of [12, Definition 9.1]. Generally, if M; is an m{-manifold and M, is an m,-manifold, then M is called a
(regular) submanifold of M, iff M; C M, and for every x € M; there is an admissible chart (U, ¢) of M, with x € U such that
e(M; NU) = o(U) N (R™ x {0}).

If M1 and M, are manifolds with atlases +; and +;, respectively, then a mapping @: M; — Mj is said to be of the class
e iff it is continuous and for all (U, ¢) € A4, (V, %) € A, the composition ¥ o @ o ¢~ ! is of the class @ (in the usual
sense) in its domain. This condition is independent of the choice of particular atlases generating differentiable structures
of M1 and M;; see [11, Proposition 3.2.6]. We say that @ is a €*°-diffeomorphism iff @ is a bijection between M; and Mj,
and both @ and @ ! are of the class €*. According to the above explanation, such a definition is compatible with the usual
notion of a €*°-diffeomorphism. If any ¢*°-diffeomorphism between M; and M, exists, then we write M; ~ M,. Of course,
in such a case the manifolds M; and M, are of the same dimension.

Finally, a mapping &@: M; — M, between an m;-manifold M; and an m,-manifold M, is called a C*°-immersion [C*°-
submersion] iff it is of the class ¢*° and for every x € M; there exist admissible charts (U, ¢) and (V, ¥) of M; and M,
respectively, such that x € U, ®(x) € V, and the derivative of the function ¥ o ® o ¢! at any point of ¢ (U) is an injective
[a surjective] linear mapping from R™! to R™2 (see [12, Proposition 8.12] for another, equivalent definition). We will find
the following lemma useful; for the proof see R. W. R. Darling [13, Section 5.5.1].

Lemma 1. Let M, be a submanifold of an open set U C R™ and M, be a submanifold of an openset V C R"™2.If ®:U — Visa
C*-immersion [C*°-submersion] with @ (M) C M,, then therestriction @ |y, : M1 — M is a C*°-immersion [C*°-submersion].

Recall that given a non-empty set X a family .# C 2 is said to be a proper o -ideal iff the following conditions hold:
(i) X & 7,
(ii) if A € # and B C A, thenB € .7;
(iii) if Ay € # fork € N, then | J;~, Ax € 7.

From now on we suppose that for each m € N a family .#, forms a proper o -ideal of subsets of R™ satisfying the following
conditions:

(Ho) {0} € 7

(Hy) if ¢ is a @*°-diffeomorphism defined on an open set U C R™ and A € .%,, then p(ANU) € #;

(Hp) if m,n e Nand A € S, then {x € R™ : A[x] &€ %} € In;

(H3) ifm,n e Nand A € .4, then R™ X A € Z; 1.

Note that by condition (H{), non-empty open subsets of R™ do not belong to .#,, whereas (Hg) and (H;) imply that any
countable subset of R™ is in .#,.

Remark 1. The conditions (Hg)-(Hs) are satisfied in the following cases:

(a) when .7, consists of all first category subsets of R™, for m € N (in this case (H,) follows from the Kuratowski-Ulam
theorem);

(b) when .7, consists of all Lebesgue measure zero subsets of R™, for m € N (in this case (H,) is just the classical Fubini
theorem).
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More generally, let u be any measure defined on all Borel subsets of R and satisfying both (Hy) and (H;). Let also
Un=p® - QU
—————
m

be the mth product measure and i, be the completion of u,,, for m € N. Then (Hq)-(Hs3) are also satisfied in the two
following cases:

(c) when .7, consists of all Borel subsets A of R™ with 1, (A) = 0 (condition (H;) follows by induction from Fubini’s theorem
applied to the characteristic function of the Borel set p(A N U));

(d) when .#, consists of all u,,-negligible subsets of R™, i.e., all ;i ,-measurable sets A C R™ with i,(A) = 0 (ifA € .7,
then A is contained in a Borel set having measure u,, zero, thus condition (H;) follows as in the preceding case).

For an arbitrary m-manifold M C R" (m < n) with an atlas A = {(U;, ¢;)}ie; we define a proper o-ideal .7, C 2M by
putting

Iy ={ACM:¢@iANU;) € 9, foreachi e I}. (3)

By condition (H;), this definition does not depend on the particular choice of 4. Indeed, let {(V;, ¥/;)}jo; be another atlas
of M, equivalent to «4. Fix any A € .4y and j € J. With the aid of Lindel6f's theorem we choose a countable set Iy C I
such that V; C Uie,o U;. For each i € I the mapping x; = ¥; o <p,-_l is a ¢*°-diffeomorphism on ¢;(V; N U;) and since
Bi = ¢i(ANV;NU;) € Iy, wehave Y;(ANV;NU;) = xi(B;) € . Consequently, yj(ANYV;) = U,-GIO YiANV,NU) € .
This shows thatif A € %y, then y;(ANYV;) € %, for each j € J. Analogously we obtain the reverse implication. Note that, by
this definition, .#zm = %, for eachm € N.

Lemma 2. Let M, be an m;-dimensional submanifold of an m,-manifold M, C R". Then

(a) My € Ay, provided that my < my;
(b) fM] C sz.

Proof. (a) By the submanifold property, we may choose an atlas A of M, such that ¢(M; N U) = ¢(U) N (R™ x {0}) for
each (U, ¢) € «. Since (Hp) and (H3) imply R™ x {0} € 7, we get (M1 NU) € Sy, as desired.

(b) The case m; < m; reduces to assertion (a). If m; = my, then for every admissible chart of M, we have p(A N U) €
Iy = Iy O

We can prove the following strengthening of condition (Hy).

Lemma 3. If @: My — M; is a €*°-diffeomorphism between manifolds My C R™, M, C R"™, then for every A € .7y, we have
CD(A) € sz.

Proof. Let A1 = {(U;, ¢)}icr and A, = {(Vj, ¥;)}jo be atlases generating the differentiable structures of My and M,,
respectively. Let also m be the dimension of M; and M,. Fixj € J; we are to prove that y;(®(A) NV;) € ;. Choose a

countable set Iy C [ withA C | o U; and for each i € Iy define a €*°-diffeomorphism x; = ¥jo ® o <pi_1. Then

V(@A) NV)) C U xi(pi(AN Uy N Dom(x:)), (4)
iely

where Dom(x;) stands for the domain of x;. Moreover, since A € .%y,, we have ¢;(A N U;) € 7, thus (H;) implies that the
both sets in (4) belong to .#,,. O

Conditions (H7), (Hy) imply a general version of Fubini’s theorem.

Lemma4. Let M; C R, M, C R™ be manifolds. If A € Ay, xm,, then
{x e My : Alx] & A, } € Iny-
Proof. Let {(U;, ¢i)}ier and {(V;, ¥;)};; be arbitrary countable atlases generating the differentiable structures of M; and M,,
respectively. Since A € %y, xu,, for eachi € I, j € ] we have
Bij := (i X Y)(AN (U; X V})) € Fin qmy-
Moreover,
Bij = {(¢i(x), ¥j(y)) € R™*T™ : x € U;and y € A[x] N V;}
fori € I,j € J. Suppose, in search of a contradiction, that

Z = {X € M, IA[X] ¢eﬂM2} ¢f[\/[1.
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Then we may find iy € I withZ N Uj, & 4y, . If for every j € | the set
G=xeZnNUy, :AXINV; & Iy,}
belonged to .#y,, then we would have
ZNUy={x€ZNUy: AlXl & A} =G € .
Jjel
which is not the case. Therefore, we may find jo € J with Gj; € .#y,. Define
B = {(gi, (%), ¥j,¥)) € R™MT™ : x € ZNU;, and y € A[x] NV, }
and note that B C B;; j,, whence B € .7, m,. However, ¢; (G,) ¢ -, and for each x € G, and t = ¢;,(x) we have
BIt] = v, (AlX] N Vi) & i,
This yields a contradiction with (Hy). O

Lemma 5. If ®:M; — M, is a C*°-submersion between manifolds M; C R™, M, C R", then forevery A C M1, A & Jy, we
have @ (A) & A,.

Proof. By Lindelof’s theorem, there is a point xo € M, such that for every its neighborhood U C M; we have AN U & .7y,.
By the assumption, we may find admissible charts (U, ¢) and (V, 1) of M1 and M,, respectively, such thatxy € U, @ (xq) €
V,o(ANU) & 4, and the derivative of ¥y o @ o ¢~ ! at any point of ¢(U) is a surjection from R™ onto R™ (m;, m, being
the dimensions of My, M,, respectively). Hence, obviously, m; > m, and there is a sequence 1 < iy < -+ < iy, < mj such
that

APy odogp

oy .9y (¢(x0)) # 0.

imy
By decreasing the neighborhood U, we may guarantee that the above condition holds true for every x € U in the place of xy,

and that the mapping ¥ o ® o ¢! is defined on the whole ¢(U).Let y o @ 0 ¢~ ' = (Gy, ..., Gm,) and define a function
F=(Fi,...,Fn):@U) — R™ by the formula

Gj(y) ifk=i;forsomeje {1,...,my},
Yk otherwise.

Fe(y) = {
Then for each y € ¢(U) we have

dYodogp)
8y,~1 e ayimz

oF

——————@ﬂ=
’E)yl...aym]

(V)‘#O,

thus, decreasing U as required, we may assume that F is a ¢*°-diffeomorphism. Enumerating the coordinates we may also
modify F in such a way that it is still a @¢°*°-diffeomorphism and

F((ANU)) C (Y o@ogp ) (p@ANU)) x RM™. (5)

In view of p(ANU) & 7,, condition (H,) yields F(¢(A N U)) & 7y,, whence (5) and (H3) imply Y (@A NU)) & Sp,.
Therefore, @ (AN U) & #y,, since ¥ is an admissible chart of M, defined on @ (U). O

In a similar manner we obtain the next lemma.

Lemma6. If ®:M; — M, is a C*-immersion between manifolds M; C R", M, C R", then for every A € .7y, we have
@(A) € j[\/[z.

From now on, let n > 2 be a fixed natural number and (-|-) be an arbitrary inner product in R" inducing a norm which
we denote by | - ||. For any set A we define A* = A\ {0}, where the meaning of 0 is clear from the context. Let L be the set of
all pairs of orthogonal vectors from R". Then | * = F~1(0), where F: (R" x R")* — R is given by F(x, y) = (x|y). Since 0 is
aregular value of F, it follows from [12, Theorem 9.11] that | * forms a (2n — 1)-manifold (being also a regular submanifold
of (R" x R™™*).

We may therefore make it precise what being “negligible” in .. means. Namely, we say thatasetZ C L has this property
iffZ € 7, » and we will then write simply Z € .#, . We are now ready to formulate our main result which we shall prove in
the last section. For notational convenience, if M is a manifold and some property, depending on a variable x, holds true for
allx e M\ Awith A € %, then we write that it holds .#,-(a.e.).

Theorem. Let (G, +) be an Abelian group. If a function f: R" — G satisfies f(x +y) = f(x) + f(y) | -(a.e.), then there is a
unique orthogonally additive function g: R" — G such that f(x) = g(x) “,-(a.e.).
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Remark 2. According to Remark 1, the above theorem works whenever the ideal .7, is defined via formula (3) for (7).,
being one of the sequences of ideals described in (a)-(d).

In case (a) the ideal .7, consists of all first category subsets of | *, regarded as a topological subspace of the Euclidean
space R?",

In case (b) the ideal .#, consists of all Lebesgue measure zero subsets of | *. Recall that the Lebesgue measure on any
regular submanifold M of R" is defined with the aid of the formula

ten (A) =/ (0™ @) dx,
o(A)

postulated for any admissible chart (U,, ¢) of M and any set A C M such that A C U, and ¢(A) C R™ is Lebesgue
measurable.

Further examples are produced by the ideals .7, described in (c)-(d), in Remark 1. For instance, one may start with the
a-dimensional Hausdorff measure 2#* (for some 0 < o < 1) defined on all Borel subsets (or on all Hausdorff measurable
subsets) of R and, by using formula (3), induce a corresponding ideal .7, . However, this ideal will not be the same as the ideal
of all Borel (Hausdorff measurable) sets A C | * with /#*@"~D(A) = 0 (the «(2n — 1)-dimensional Hausdorff measure on
the metric space | *), since the product measure .#* ® s need not be the Hausdorff measure .#>* (consult [ 14, Section 3.1]
and the references therein). This leads to the following question: Let 0 < o < 1.Is our Theorem true in the case where .7|
is the set of all Borel (Hausdorff measurable) sets A C | * with #*?"~D(A) = 0 and .7, is replaced by the ideal of all Borel
(Hausdorff measurable) sets B C R" with #*"(B) = 0?

Before proceeding to further lemmas, let us note some preparatory observations. For any x € R" define
Pe={yeR": (x,y) € L},

which obviously forms an (n — 1)-manifold diffeomorphic to R"~!, provided x # 0. We will need to “smoothly” identify the
hyperplanes P, for different x’s, with one “universal” space R"~!. By virtue of the Hairy Sphere Theorem, it is impossible to
do for all x € (R™)* in the case where n is odd. Nevertheless, it is an easy task when considering only the set of vectors for
which one fixed coordinate is non-zero, e.g. the set

X :=R"! x R*.

Namely, for an arbitrary x € X the vectors x, eq, ..., e,_; are linearly independent, where e; stands for the ith vector
from the canonical basis of R". Let B(x) = (y,-(x))?;ol be an orthonormal basis of R" with yo(x) = x/||x||, produced by the
Gram-Schmidt process applied to the sequence (x, eq, ..., e,_1). Define i,: R — R" to be the mapping which to every

z € R" assigns its coordinates with respect to B(x), i.e. ¥(z) = Y (x)~ 'z, where
b%
Y(X) = <_9y1(x)7 o ’Yn—l(x)>
lIx1l

is the matrix formed from the column vectors. Define also @:X x R" — X x R" by & (x,z) = (X, Y¥x(2)). Plainly, & is a
C*-mapping and its inverse @ ' (x, y) = (x, Y(x)y) is @ as well. Therefore, @ is a @*-diffeomorphism. Moreover, by the
definition of v, the restriction y|p, maps Py onto {0} x R™ ! hence we have

' (X x ({0} xR ={(x,2) e L*:xeX}= 1. (6)

Making use of [12, Theorem 11.20] and an easy fact that the restriction of a ¢* mapping to a submanifold of its domain is
C again,! we infer by (6) that @| , yields a *-diffeomorphism between |’ and X x ({0} x R*1).
Consequently, if a function h: R" — G satisfies h(x + y) = h(x) + h(y).#, -(a.e.), then with the notation

Z(h) :={(x,y) € L" : h(x +y) # h(x) + h(y)}
it follows from Lemmas 3 and 4 that
(xeX: Y@ : (x,2) € Z(W)} & Ijgpn-1} € Fx.
Since P, ~ {0} x R""!, by the mapping yx|p, for x € X, we infer that the set
D(h) ={x e X :h(x+y) = h(x) + h(y) %p,-(a.e.)}
satisfies X \ D(h) € . For any x € R" put
Ex(h) ={y € Px : h(x +y) = h(x) + h()};

then P \ Ex(h) € .%,, provided x € D(h).
We end this section with a lemma, which will be useful in the “odd” part of the proof of our theorem. Despite it will be
applied only in the case n = 2, we present it in full generality, since the lemma seems to be interesting independently on

1 In the sequel, we will be using these two assertions without explicit mentioning.



6 T. Kochanek, W. Wyrobek-Kochanek /J. Math. Anal. Appl. 400 (2013) 1-14

the problem considered. Let S"~! be the unit sphere of the normed space (R", || - ||). Since the function F: R" — R given by
F(x) = ||x||? is @ with the regular value 1 and S"~!' = F~1(1), we infer that S"~' is an (n — 1)-manifold.
Lemma 7. If A € %1, then there exists an orthogonal basis (x1, . .. , X;) of R" such that x; € S"~'\ Aforeachi € {1,...,n}.

Proof. It is enough to prove the assertion in the case where (-|-) is the standard inner product in R", since between any two
inner product structures in R" there is a linear isometry, which yields a €¢*°-diffeomorphism between their unit spheres.
Consider the group GL(n) of n x n real matrices with non-zero determinant. It may be identified with an open subset of

R™ and hence—it is an n?-manifold. It is well-known that the orthogonal group
O(n) ={A eGL(n) : AA" =1}

forms a submanifold of GL(n) and its dimension equals n(n — 1)/2 (see [11, Section 3.5.5C]). For any i € {1,...,n} let
mi: O(n) — S"~ ! be given by 7;(A) = Ae; (which is nothing else but the ith column vector of A). Then 7; is the restriction of
the mapping 7;: GL(n) — R" defined by the formula analogous to the previous one. Since

D7;(A)B = Be; forA € GL(n), B € R",

the derivative D77 ;(A) is onto for any A € GL(n), thus 7; is a €°°-submersion. By Lemma 1, 7; is a ¢*°-submersion as well.
Now, suppose on the contrary that each orthonormal basis of R" has at least one entry belonging to A. In other words,
foreachA € O(n) thereisi € {1, ..., n} with ;(A) € A, i.e.

om == (A.
i=1

Therefore, for a certaini € {1, ..., n} we would have ni_l(A) & Som)- However, A = yr,-(yri_](A)) € Jen-1, which contradicts
the assertion of Lemma 5, as 77; is a €*°-submersion. O

3. Proof of the theorem

For the uniqueness part of our Theorem suppose that there are two orthogonally additive functions g; and g, equal to
f #1-(a.e.). By the general form (2) of orthogonally additive mappings, we see that both g; and g, satisfy the Fréchet functional
equation Aig(x) = 0; thus arguing as in the proof of the uniqueness part of [ 15, Theorem 1], or making use of [10, Lemma
17.7.1], we get g1 = g>.

The proof of existence relies on some ideas from [2,1]. Assume G and f are as in the theorem. We start with the following
trivial observation.

Lemma 8. The functions f, f,: R" — G given by
) =FC) =f(=x) and f(x) =f) +f(=x)
satisfy
hx+y) =@ +HB) and H(x+y) =LK +L0) Si-(ae).

In the sequel we will be using hypothesis (Hy)-(H3) and Lemmas 2-4 without explicit mentioning.
For k, m € Nwith 2 < k < m we define O(k, m) as the set of all k-tuples of mutually orthogonal (with respect to the
usual scalar product) vectors from R™ with at most one of them being zero. Put

Riem = (.., x®) e @™ : x? = 0foratmostonei=1,...,k}.
k=1 .
Then O(k.m) = F~1(0), where F: Ry, — R 7 is given by

Fx, . x0) = (kW )x@), xVxP), .., (x D x®),
2 3 2 K
K@), P RO),

(x(k—l) |X(k)>).

Since 0is a regular value of F, [12, Theorem 9.11] implies that O(k, m) is a submanifold of R¥™ with dimension km — %k(k— 1).
In particular, 0(2, n) = 1*.

Lemma9. let k € N, k > 2 and let A C O(2, k) be a set such that
(xD, ..., x®)y e 0k, k) : (xV, x?) € A} € Joqi.
Then A € H02,k)-
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Proof. Denote the above subset of O(k, k) by B. We may clearly assume that for each (x(V, x*) € Awe have xV #£ 0 #£ x®@,
Fori,j € {1, ..., k} define

(
X; ;

Bj = {(x(”, ...,x(")) €B: (x(l),x(z)) € Dy}.

XD 5D
Dj = x",x?) € 02, k) : det[ ", U, ) #0¢,
X;

We will show that

A:O(AﬂDij) and B:OBU- (7)
l]j;l i,lj;?jl
For the former equality suppose that for some (x', x?)) € A and each pair of indices 1 < i,j < k, i # j, we have
1 1
det(ﬁz; 2;) —0. (8)
(2)

i

(1)

Then for each 1 < i < k we have xi(]) = 0if and only if x;” = 0. Indeed, choosing any 1 < j < k such that X, # 0wesee

from (8) that x?l) = 0 implies xl.(z) = 0; the reverse implication holds by symmetry. Now, let 1 < i; < --- < i, < k be the
indices of all non-zero coordinates of xV’ (and x?). For each pair of 1 < i, j < k one of the rows of the determinant in (8)
is a multiple of the other. Applying this observation consecutively for the pairs (i, i2), (iz, i3), .. ., (ie—1, i¢) we infer that
x and x are parallel. Since they are also orthogonal, one of them should be zero which is the case we have excluded. The
former equality in (7) is thus proved, and its easy consequence is the latter one.

We are now to show that A N Dy € Sy for each pair of indices i,j € {1, ..., k} with i # j. So, fix any such pair and

assume that i < j. Then for every (x'V, x?) € Dj; the vectors:
e
X( ),X( )7 €1, .5 €i—1,€ip1, vy ej—]’ ej+]7 cees Bk
form a basis of R¥. Let
k
B, x?) = (n™,x?)_,

be an orthonormal basis produced by the Gram-Schmidt process applied to that sequence of vectors. Since x and x® are
orthogonal, we have
(1 D @ x®
—— and X, x) = .
] V2O =

Y1, x?) =

For (xV, x?) € Dj; define ¥, ,@:R* — R¥ as the mapping which to every z € R* assigns its coordinates with respect to
B(xD, x?) je.

P 40 (@) = Y&V, xP) 7z,
where

1 2
YV, x@) = XV x® xV, x@) xV, x@)
AN O Ml

is formed from the column vectors. Obviously, every z belonging to the orthogonal complement V (x(V, x®)) of the subspace
spanned by x' and x® is mapped onto a certain vector of the form (0, 0, t, . . ., t;) which may be naturally identified with
an element of R*~2. Hence, we get a linear isomorphism y,a) y: V(x", @)+ — R*"2 and we may define a mapping

r{", ..., x9) e ok k) : 'V, x?) € Dj} > (02, k) N D) x Ok — 2,k — 2)
by the formula
F(X(l), ceey X(k)) = ((X(l), X(z)), ()/X(l)’x(z) (X(3)), s Ve @ (X(k)))).

The definition is well-posed, since 9, 4, and hence also y,m 4, is an isometry for each (x, x@) € Dy. Moreover, it is
easily seen that I" is a ¢*°-diffeomorphism (the formulas of the Gram-Schmidt procedure are C*°).
It easily follows from B € %y k) that B;; belongs to the corresponding ideal of subsets of

(V... x®) e Ok, k) : 'V, x?) € Dy};
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thus I" (B;;) belongs to the ideal corresponding to (O(2, k) N D;;) x O(k — 2, k — 2). Finally, observe that
'(By) = (ANDy) x O(k — 2,k —2),
which yieldsA N D € J0(2,l0nD;; and hence also AN Dy € Sok. O
Lemma 10. Ifan odd function h: R"™ — G satisfies h(x+y) = h(x) +h(y) .7, -(a.e.), then there is an additive function b: R" — G
such that h(x) = b(x) #-(a.e.).

Proof. Due to some isometry formalities, we may suppose (-|-) to be the standard inner product in R".
Define

W ={x=(x1,...,%) € R": x; = 0 for some i}

and
Sﬂ'r_l ={x=(,...,x) €S :x, > 0}.

Since Si‘l is an open subset of S"~!, it is an (n — 1)-manifold. For any x € S_”[l let
Te = {(h,y) € R x Py 1 1% = |ly|)%).

Define a map @,: R* x P} — R" x R" by

2
5X()\'7y):<)"x+y5 @X_Y) (9)

and set @, = 5x|(R*><p;(k)\Tx. Letalso Q (x) = ¢x((R* x Py) \TX) C 1 *.We are going to show that foreveryx € P := S_"[l \W
the set Q (x) forms a submanifold of | *.

At the moment, let x € S_”[l. For brevity, denote & = w(k,y) = |yl?/X. It is easily seen that for each (t,u) =
(Ax + y, ux — y) € Q(x) all four vectors: t, u, x, y belong to the subspace V(t, x) of R" spanned by t and x. Choose an
arbitrary non-zero vector z(t, x) € V(t, x), orthogonal to x. Then z(t, x) is collinear with y; hence the equality t = Ax +y
represents t in terms of the basis (x, z(t, x)) of V(t, x). Therefore, A and y are uniquely determined by t, which proves that
@, is injective.

In order to show that 45;1 is continuous fix an arbitrary (t, u) € Q(x). Now, put z(t, x) = (t|x)x — t; then (x, z(t, X)) is
an orthogonal basis of V (¢, x). Since t = Ax + y for certain . € R* andy € P;, we have t = Ax + az(t, x) for some « € R,
whence we find that A = (t|x) and y = t — (t|x)x. We have thus shown that &, is a homeomorphism.

Now, fix x € P. We shall prove that @, is a €>°-immersion. To this end put

Vo= {0y e R x @) 10 = (y) £ V) + P

and define a mapping ®y: (R* x (R")*) \ Vx = R" x R" by the formula analogous to (9). Then (R* x P;) \ Ty is a submanifold
of (R* x (R™)*) \ V. Let (A,y) € (R* x (R")*) \ V,. If we show that the derivative Dé)x(k, y) is injective, then, in view of
Lemma 1, we will be done. Since

X1 10 0
X 0 1 0
Dox(2,y) = X, 00 ... 1 |
A(ux —y) I(ux —y)

oA ay
we immediately get that rank D&, (A,y) > n,where the equality occurs only if the first column vector is a linear combination
of the remaining n column vectors with coefficients x4, . . ., x,. However, this would imply that for eachi € {1, ..., n} we
have

n

a(uxi —yi) Zx'a(lm —Yi)
BN =7 ey
ie.
A =20y = llyl* =0,

which is not the case, since (A, y) & V. As a result, we obtain rank D, (A, y) =n+ 1, thus Dd, (1, y) is injective.
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We have shown that @, is an embedding (i.e. homeomorphic ¢*°-immersion) of (R* x PJ) \ Ty into _L*. By virtue of
[12, Theorem 11.17], its image Q (x) is a submanifold of | *.

Observe that the manifolds Q (x), for x € P, are €*°-diffeomorphic to each other. Indeed, by the remarks following the
statement of our Theorem, for each x € X the function ¥: R* x Py — R* x (R"™1)* defined by the formula

W, y) = 0, YY), (10)

where ¥, (y) = Y (x)"'y is defined as earlier and the tilde operator deletes the first coordinate (which equals 0 for y € Py),
is a ¢*°-diffeomorphism. Moreover, ¥ maps (R* x Py) \ Ty onto the set

U= {0,y e R" x R 2% # lyI?),

which follows from the fact that fo is anisometry. Therefore, for eachx, y € P, the mapping &, o lI/y” oW od, !yieldsa C™-
diffeomorphism between Q (x) and Q (y). So, we pick any xo € P and we regard the set Q := Q (xp) as a “model” manifold
for all Q (x)’s.

Define

LD = ((t,u)y e 1" ta+uy #0, £ #0, u0and ||e] # [lul}
(which is an open subset, and hence it is a submanifold, of | *) and observe that
1= ew. (1)
xesﬂ':l
In fact, for any (t,u) € |V put

t+u
It +ull’

x = sgn(t, + uy,) (12)
Thenx € Sf:l and (t, u) € Q(x). Indeed, if we choose any yo € Py N V(t, u) with ||yg]| = 1 (which is unique up to a sign),
then t and u are represented in terms of the basis (x, yg) of V (¢, u) as follows:

t = (t|x)x + (tlyo)yo and u = (u|x)x + (ulyo)yo,

and we have

(tlyo) = (t + ulyo) — (ulyo) = =t + ull{xlyo) — (ulyo) = —(ulyo).

Hence, after substitution A = (t|x) and y = (t|yo)yo, Wwe obtaint = Ax + y and u = (u|x)x — y. The coefficient (u|x) equals
lylI?/A, since (t|lu) = (x|y) = 0. Moreover, A # 0,y # 0, and it follows from ||t|| # |ju| that A2 # (u|x)? = |y||*/A2,
which gives A? £ ||y||?. Consequently, (t, u) € Q(x) and thus we have proved the inclusion “C”. The reverse inclusion is a
straightforward calculation.

We shall now prove that the mapping A:S~! x U — 1V defined by

A(X, )"ay) = ¢X o WX_]()"ay)

is a @*°-diffeomorphism.
First, in view of (11), it is easily seen that the image of A is 1 (V. According to the definition, A is @>. Moreover, for each
(t,u) = &x(A, ¥ ' (¥)) € Q(x) we have

-1 2
(A+ 1V, W

. )x:t—f—u, (13)

which, jointly with the fact that x € S_”[l, uniquely determines x. By the injectivity of @,, we infer that A and y are then
uniquely determined by ¢ and u as well. Therefore, A is injective. N
In order to get a formula for A~", observe that for each (t, u) = @x(A, ¥ '(y)) € LV equality (13) yields (12). This
means that x is expressed as a function of t and u, which is @ on both components of the set | (. By the formula for d);l,
we get
(t|t 4 u)

A = sgn(t ST and =~(t—
sgn(t, + up) I+ ul and y = v

(tlt + u)
e up )

and since the value of 1/~fx at a given point is a @ function of x, we infer that A~! is @*. Consequently, A is a C>°-
diffeomorphism.
Let x: LW — $"" x Q be given by

X = (idgn-1 x @,,) 0 (idsi_1 x ¥ oAl
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then x is a @>°-diffeomorphism. Since Z(h) € .#| and 1V is an open subset of | *, we have Z(h) N LV € .7, ). Therefore,
xes' ' x@mh N L)Xl & 7)€ S (14)
Letx € S""'. Forany q € Q we have
gex@mMN 1Ml < x.q) € xZ)N 1Y) = x'x.q) ez N L.

Plainly,
-1 . . - \—1
X =Ao (1d5171 X Yy,) 0 (ldsi” X Dy)" 7,

so the last condition is equivalent to A(x, (¥, o 5;0 1)(q)) € Z(h). We have thus shown that
—1
Xx@MN LM ={g€Q: Ak, (W 0 D, )(@) € Z(W)}.
Since the map ¥y, o 5;01: Q — U is a diffeomorphism, axiom (H;) and Lemma 3 imply that:

XZM)N LMK ¢ A < ((hy) €U: AR A Y) € Z(W) & 4,
= {(Ly) €U B0 Uy ' 0) €Z(h) & 4
= ((y) R x R™D)* 1 (b, ¥ (1) € Z(h)} & 74
= ((hy) €R* X PY: By(h,y) € Z(h)} & Inexpy
= () € ® X P\ T &4, Y) € Z(W} & Fmxppnts
= Z(h) N QX & Sow.-

Thus (14) gives
(xeP:Z()NQAE) & Jow) € Fu1.

Since S ' \ P € -1, we have also
+

Z(h) NQkx) e efQ(X) Z

n—1
Sy

-(a.e.). (15)
For any x € S~ " define I}: R* x P¥ — 1*and ©,:R* x P} — 1*as

2
Fx(k,y)=<@x, —y) and 6x(A,y) = (Ax,y),

and put R(x) = I,(R* x PJ), S(x) = Ox(R* x P}). An argument similar to the one above shows that R(x), for x € S_"[l, are
submanifolds of | *, @°°-diffeomorphic to each other, and the same is true for S(x)’s. Moreover, the set

1P ={twel":#0andu#0}= (] Rw= ] s

n—1 n—1
xe5+ XeSy

is €*°-diffeomorphicto 51_1 xRand Sfl xS, where Rand S are “model” manifolds for all R(x)’s and for all S (x)’s, respectively.

Arguing further, analogously as above, we also infer that

Z(h) NR(x) € jR(x) and Z(h) NS(x) € zﬁg(x) L.

n—1-!
S+

(a.e.). (16)

According to (15) and (16) there is a set So € #cn—1 with
+

Z(h)yNQ® € A,
Z(h) NR(X) € Fre), (17)
Z(hyNSkx) € I5(x)

forx € ST\ So.
At the moment, assume that n = 2. Applying Lemma 7 to the set

A:=5 U (=S U{(—-1,0),(1,0)} € 4,

and changing signs of vectors of the obtained basis as required, we get an orthogonal basis (xV, x*)) of R? whose each
element x satisfies conditions (17).
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Now, we shall prove that for each i € {1, 2} the function h;: R — G given by h;(1) = h(Ax?) satisfies
hi(A 4+ ) = hi(A) + hi(n)  2(F0,00))-(ae.), (18)

where £2(#0.00)) = {A C (0,00)? : A[X] € #0.00)-%(0.00)-(a-€.)} is the so called conjugate ideal. Plainly, condition (18)
would imply that the same is true with (0, co) replaced by (—o0, 0), due to the oddness of the function h.
Fixi e {1, 2}. In view of (17), with x replaced by x| there isa set C; € Spexpr, such that

2
<kx(') +y, @x(’) — y) e 1*\Z(h),
(19)

I :
(5" —y) e L \zaw.

(D, y) € L*\Z(h)
for (A,y) € (R* x P:m) \ G (note that T,o) € g+« P so we may include the set T, into C; and we see that the difference

between the domain of @, and the domains of I, ®,a causes no trouble at all). Therefore, for all A € R except a set
A; € . the conjunction (19) holds true forally € P, \ Yi(A) with Y;(X) € Jpx(i). Let

2
Bi(%) = {@ 1y € Py \Yi(k)} .

Then, obviously, R \ Bi(A) € ., for each positive A & A;, whereas R \ Bj(1) € #(_ o) for each negative A & A;. For
every pair (A, ) with A &€ A;and u € Bi(A), u = W we have

h()\+u)—h(xx(’)+ DR ) b + )+h<”);” _y)

2
= h(xxD) + h@y) + h( ”3;” ) + h(=y) = hi(}) + hi(w),

which proves (18). Applying the theorem of de Bruijn [4] separately to the functions h;| 9,0y and hi|(—oc,0) We get two additive
mappings b;: (0, 00) — G and b}: (=00, 0) — G which coincide with these two restrictions of h; almost everywhere in
(0, 00) and (—o0, 0), respectively. However, since h is odd, the extensions of both b; and b;’ to the whole real line have to
be the same. As a result, there is an additive function b;: R — G such that h;(A) = b;(A) for A € R\ Z; with a certainZ; € .#.

Define a function b: R> — G by b(x) = by(X1) + b2(X,), where 1; is the ith coordinate of x with respect to the basis
(xV, x@). Plainly, b is an additive function. It remains to show that h(x) = b(x).%;-(a.e.).

Recall that for every x € X = R x R* the mapping ¥ defined by (10) yields a €*°-diffeomorphism between R* x P} and
R* x R*. In particular, we have C := ¥,1)(C;) € % and

(X Y1) € L\Z(h) for (1,y) € R\ C. (20)
Define A: R? — R? by

A, 22) = (R, Y (Ax®)).
Plainly, A is a @*°-diffeomorphism, so A~'(C) € .%,. Therefore,

AT (CO)U(Z) xR)U (R x Z,) € %
and for each pair (11, 1) € R? outside this set condition (20) implies (A1x", A,x?) € [ *\Z(h); thus

h(Aix D + 25x®) = h(axP) + h(ax™M) = hi(0) + ha(hy)
= b1(1) 4 b2(2) = b(haxV + 2x?).

By the isomorphism, which to every x € R? assigns its coordinates in the basis (x'", x?)), we have h(x) = b(x).,-(a.e.) and
our assertion for n = 2 follows.

In the sequel, assume that n > 3 and the assertion holds true for n — 1 in the place of n.

Define O(n — 1, n)’ to be the set of all (n — 1)-tuples from O(n — 1, n) generating a subspace of R" whose orthogonal
complement is spanned by a vector (xq, ..., X;) with x, # 0. In other words,

XD Ao A x(=D gt

[xD Ao A xO=D|

on—1,n = {(x“),...,x(””) e0o(n—1,n):+
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where A stands for the wedge product in R". This set, being an open subset of O(n — 1, n), is its submanifold having the
same dimension. Consider the mapping £2: Sfl x 0(n—1,n—1) - O(n — 1, n)’ defined by
20, xV, x0Ty = (PTG D), L TG ™TY)),

The values of £2 indeed belong to O(n — 1, n)’, since for each x € X the function 1, is an isometry, being a linear map
determined by the orthogonal matrix Y (x)~!. Furthermore, £2 is bijective with the inverse £2~! given by

2700,y = (% YD) L ),
where
YD A A yD
YD A - A yE=D|

and the sign depends on which of the two components of O(n — 1, n)’ contains (yV, ...,y ). By the above formulas, £2
is a ¢*°-diffeomorphism.
Put

Z={oP, ...,y eom—-1n": "V, y?) ezh)).

Then Lemma 5 implies Z € Fo;—1,ny, since Z(h) € .7, (i.e.Z(h) € S n) is the image of Z through the ¢*°-submersion
o, ..y D) B (D, y@). Therefore, we have 271(2) € S hence 271(Z)[x] € Fom_1.n—1) is valid
+
Fen-1-(a.e.), which translates into the fact that the set
+

x0(n—1,1—1)

AR =D, .. k") eom—1,n—1): (Y7 D), ¥ T« D)) € Z(h)

belongs to .p(n—1,n—1) for every x € Sf’[l except a set from .#,—1. By virtue of Lemma 9, for each such x we must have
+

[, x®) e 0@2,n— 1) : (¥ '), ¥ ' x®)) € Z(h)} € Ao (21)
Hence, putting |, = {(t, u) € Py x Py : (t, u) € L} we infer that the condition
h(t +u) = h(t) + h(u) s x-(ae.) (22)

is valid fsi—l -(a.e.). Consequently, we may pick a particularx € S_"[l satisfying both (17) and (22). By virtue of our inductive

hypothesis and some isometry formalities (identifying P, with R"!), condition (22) yields the existence of an additive
function by: Py — G such that h(t) = b(t) fort € Py \ Y with a certain Y € .#, . Moreover, by an earlier argument,
there is also an additive function b;: R — G such that h(Ax) = by(}) for A € R\ Z; with a certain Z; € .#;. Finally, there is
aset C; € Sgxp, With (Ax,y) € 1*\Z(h) whenever (A,y) € (R x Px) \ C;.

Define a function b: R" — G by the formula b(Ax + y) = b1(A) + by(y) for A € Rand y € P,. Then b is additive and for
each pair (A, y) € R x P, outside the set

CLU(EZy xPy)URXY) € Srxp,
we have

h(Ax +y) = h(Ax) + h(y) = b1(}) + bx(y) = b(Ax +y),
which completes the proof. O

Lemma 11. If a function h: R" — G satisfies h(x) = h(—x).%,-(a.e.) and h(x + y) = h(x) + h(y) .#| -(a.e.), then there is an
additive function a: R — G such that h(x) = a (||x||?) -(a.e.).

Proof. Forany r > 0let S""!1(r) = {x € R" : ||x|| = r}. By the natural identification, we have (R")* ~ (0, co) x S"~ 1.
Therefore, for every A € .7, there is a set R(A) € % ) such that ANS""1(r) € Fgn-1p forr € (0, 00) \ R(A). In the first part
of the proof we will show the following claim: there exists a set A € .#, such that for each r € (0, c0) \ R(A) the function h
is constant #sn-1(,)-(a.e.) on S"=1(r), more precisely—that h|gn-1, is constant outside the set A N S™1(r).

We start with the following observation: there is T € .#, such that h(t + u) = h(u — t) whenever (t,u) € 1*\T. Let
E={xeR":h(x) =h(—x)}and H = (—D(h)) N D(h) NE; thenR" \ H € .#,. Define

T={(t,u)e 1*:t€H}U{(t,u) e 1" :t e Handu & E;,(h) NE_.(h)}. (23)

Then for every (t,u) € 1*\T we have h(t + u) = h(t) + h(u) and h(u — t) = h(u) + h(—t). Moreover, we have
also h(t) = h(—t); hence h(t + u) = h(u — t), as desired. In order to show that T € .#, note that it is equivalent to
TN 1 e .7, where |’ may be identified with X x R"~!. The first summand in (23), after intersecting with |, is then
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identified with (X \ H) x R"~! € .%,_;, whereas for each pair (t, u) from the second summand we have either (t, u) € Z(h),
or (—t, u) € Z(h), which shows that it belongs to .7, . Consequently, T € .7, .

Define @: | * — R" x R" by putting @ (t,u) = (t + u, u — t). It is evident that @ is a €¢*°-immersion and yields a
homeomorphism between | * and

M=ol = ] ") xs"0).
re(0,00)

Therefore, [12, Theorem 11.17] implies that M is a manifold. Moreover, ®: 1* — M is a C*°-diffeomorphism; thus
®(T) € . Since the mapping (x,y) — (x,y/|x||) yields M ~ (R")* x S"! there exists a set A € .#, such that for
every x € R" \ Awe have

(X, y) ¢ ¢(T) <]5n71(”x‘|)‘(a.e.).

By the property of the set T, (x,y) & @ (T) implies h(x) = h(y). Now, forany r € (0, o) \ R(A) and for arbitrary x,y € R"\ A
with ||x]| = |ly|| = r, we have

(x,2), (y,2) ¢ &(T) fsn—ur)‘(a-ﬁ);

hence h(x) = h(z) = h(y), which completes the proof of our claim.
There is a function g: R" — G which is constant on every sphere S"~!(r) such that h(x) = g(x) for x € R" \ A. Therefore,
there is also a function ¢: [0, c0) — G satisfying g(x) = ¢ (||x||2) for every x € R™. We are going to show that

P+ ) =)+ o) 2(H0,00))-(ae.). (24)
Put
B={(x,y) € L*: eitherx € A, ory € A, orx+y € A}
and observe that B € .#,, whence alsoZ :=Z(h) UB € .#, . Let
D={xe ®R") : (x,y) €Z sp-(ae.)}.

By an argument similar to the one applied to D(h), we infer that X \ D € .#x; hence R" \ D € .#,. For each x € R" put
Ex={y € Py: (x,y) ¢ Z}; then P, \ Ex € % provided x € D. Letalso D’ = {||x||* : x € D}; then (0, 00) \ D' € #g o)-

Fix arbitrarily A € D’ and choose any x € D satisfying v/A = ||x||. PutE(A) = {||ly||> : y € Ex} (then (O, 00)\E(X) € H0,00))
and pick any i € E(A). Then /i = |ly|| for somey € E,, which implies (x, y) ¢ Z. Applying the facts thatx+y &€ A, (x,y) &
Z(h),x ¢ Aand y ¢ A, consecutively, we obtain

A+ pn) =gx+y) =hx+y)
=hx) +h@y)=2x) +20) =) + o),

which proves (24).

By the theorem of de Bruijn, there is an additive function a: R — G such that (1) = a(}) for . € [0, c0) \ Y with
Y € 4 ). Then the equality h(x) = a (||x||2) holds true for x € R" \ (AU C), where C = {x € R" : ||x]|> € Y} € .#,. Thus,
the proof has been completed. O

To finish the proof of our theorem we shall combine Lemmas 8, 10 and 11 to get additive functions a:R — G and
b: R" — G such that

2(f® —a(lx|*) =bx) =0 s-(ae.).
The only thing left to be proved is the following fact in the spirit of [2, Lemma 2].
Lemma 12. Ifa function h: R" — G satisfies 2h(x) = 0 .#,-(a.e.) and h(x+y) = h(x) + h(y) .7, -(a.e.), then h(x) = 0 .7,-(a.e.).

Proof. For every x € R" put g(x) = h(x) — h(—x). Applying Lemmas 8 and 10 we get an additive function b: R" — G such
that g(x) = b(x).#,;-(a.e.). Therefore

2(x) = 2b (g) = 2h (g) —2h (—g) =0 s-(ae),

i.e. h(x) = h(—x).7,~(a.e.). Now, by virtue of Lemma 11, there is an additive function a: R — G satisfying h(x) = a(||x||?).#-

(a.e.). Consequently,
oo =a(2| 5 ) =2 (|
X)=a —X =2a| ||—x
V2 V2

2
) = 2h (%x) =0 #-(ae). O
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